В чем растворяется сера. Физические и химические свойства серы

Строение и свойства атомов . Атомы серы, как и атомы кислорода и всех остальных элементов главной подгруппы VI группы Периодической системы Д. И. Менделеева, содержат на внешнем энергетическом уровне шесть электронов, из которых два электрона неспаренные. Однако по сравнению с атомами кислорода атомы серы имеют больший радиус, меньшее значение электроотрицательности, поэтому проявляют более выраженные восстановительные свойства, образуя соединения со степенями окисления +2, +4, +6.

По отношению к менее электроотрицательным элементам (водороду, металлам) сера проявляет окислительные свойства и приобретает степень окисления -2.

Сера - простое вещество . Для серы, как и для кислорода, характерна аллотропия. Известно много модификаций серы с циклическим или линейным строением молекул различного состава.

Наиболее устойчива модификация, известная под названием ромбической серы, состоящая из молекул S 8 (рис. 116). Её кристаллы имеют вид октаэдров со срезанными углами. Они окрашены в лимонно-жёлтый цвет и полупрозрачны, температура плавления 112,8 °С. В эту модификацию при комнатной температуре превращаются все другие модификации.

Рис. 116.
Модель молекулы ромбической серы

Известно, например, что при кристаллизации из расплава сначала получается моноклинная сера (игольчатые кристаллы, температура плавления 119,3 °С), которая затем переходит в ромбическую (рис. 117). При нагревании кусочков серы в пробирке она плавится, превращаясь в жидкость жёлтого цвета. При температуре около 160 °С жидкая сера начинает темнеть и становится настолько густой и вязкой, что даже не выливается из пробирки, однако при дальнейшем нагревании превращается в легкоподвижную жидкость, но сохраняет прежний тёмно-коричневый цвет. Если её вылить в холодную воду, она застывает в виде прозрачной резинообразной массы. Это пластическая сера. Её можно получить и в виде нитей. Однако через несколько дней она также превращается в ромбическую серу.

Рис. 117.
Взаимопревращения аллотропных модификаций серы

Сера не растворяется в воде. Кристаллы серы в воде тонут, а вот порошок плавает на поверхности воды, так как мелкие кристаллики серы водой не смачиваются и поддерживаются на плаву мелкими пузырьками воздуха. Это процесс флотации. Сера малорастворима в этиловом спирте и диэтиловом эфире, хорошо растворяется в сероуглероде.

При обычных условиях сера реагирует со всеми щелочными и щёлочноземельными металлами, медью, ртутью, серебром, например:

Эта реакция лежит в основе удаления и обезвреживания разлитой ртути, например из разбитого термометра. Видимые капли ртути можно собрать на лист бумаги или на медную пластинку. Ртуть, которая попала в щели, нужно засыпать порошком серы. Такой процесс называют демеркуризацией.

При нагревании сера реагирует и с другими металлами (Zn, Al, Fe). Только золото не взаимодействует с ней ни при каких условиях.

Окислительные свойства сера проявляет и с водородом, с которым реагирует при нагревании:

Н 2 + S = H 2 S.

Из неметаллов с серой не реагируют только азот и иод, а также благородные газы.

Сера горит синеватым пламенем, при этом образуется оксид серы (IV):

S + O 2 = SO 2 .

Это соединение широко известно под названием сернистый газ.

Лабораторный опыт № 28
Горение серы на воздухе и в кислороде

В природе сера встречается в трёх формах: самородная, сульфидная и сульфатная (рис. 118, табл. 8).

Рис. 118.
Сера в природе:
1 - самородная сера; 2 - пирит; 3 - цинковая обманка; 4 - гипс; 5 - глауберова соль

Таблица 8
Сера в природе

Сера - жизненно важный химический элемент. Она входит в состав белков - одних из основных химических компонентов клеток всех живых организмов. Особенно много серы в белках волос, рогов, шерсти. Кроме этого, сера является составной частью биологически активных веществ организма: витаминов и гормонов (например, инсулина).

Сера участвует в окислительно-восстановительных процессах организма. При недостатке серы в организме наблюдается хрупкость и ломкость костей и выпадение волос.

Серой богаты бобовые растения (горох, чечевица), овсяные хлопья, яйца.

Применение серы . Сера была известна людям с глубокой древности. Своё название она получила от санскритского слова сира, что значит «светло-жёлтый». Сера применялась в Древнем Египте уже за две тысячи лет до нашей эры для приготовления красок, беления тканей и изготовления косметических средств. В Древнем Риме серу применяли для лечения кожных болезней, а в Древней Греции её сжигали в целях дезинфекции вещей и воздуха в помещениях.

В Средние века у алхимиков сера была выражением одного из «основных начал природы» и обязательной составной частью «философского камня».

Если вы читали знаменитый роман А. Дюма «Граф Монте-Кристо», то сможете назвать области применения серы, известные с древнейших времён. Герой романа аббат Фариа притворился, что у него кожная болезнь, и ему для её лечения дали серу, которую предприимчивый аббат использовал для изготовления пороха.

Серу используют в производстве спичек и бумаги, резины и красок, взрывчатых веществ и лекарств, косметических препаратов. В сельском хозяйстве её применяют для борьбы с возбудителями грибных и бактериальных болезней, вредителями растений (рис. 119).

Рис. 119.
Применение серы:
1 - изготовление мазей; 2 - производство спичек; 3 - производство взрывчатых веществ; 4 - производство серной кислоты; 5 - целлюлозно-бумажная промышленность; 6 - в сельском хозяйстве для обеззараживания помещений; 7 - получение резины

Однако основной потребитель серы - химическая промышленность. Около половины добываемой в мире серы идёт на производство серной кислоты.

Новые слова и понятия

  1. Строение атомов серы и степени окисления серы.
  2. Аллотропия серы: ромбическая, моноклинная и пластическая сера.
  3. Химические свойства серы: взаимодействие с металлами, кислородом, водородом. Демеркуризация.
  4. Сера в природе: самородная, сульфидная и сульфатная сера.
  5. Биологическое значение серы.
  6. Применение серы.

Задания для самостоятельной работы

Описание и свойства серы

Сера представляет собой вещество, которое находится в в 16 группе, под третьим периодом и имеет атомный номер – 16. Она может встретиться как в самородном, также и в связанном виде. Обозначается сера литерой S. Известна формула серы – (Ne)3s 2 3p 4 . Сера как элемент входит в состав многих белков.

На фото кристаллы серы

Если говорить о строении атома элемента серы , то на внешней его орбите есть электроны, валентное число которых достигает шести.

Это объясняет свойство элемента быть максимально шестивалентным в большинстве объединений. В структуре природного химического элемента есть четыре изотопа, и это – 32S, 33S, 34S и 36S. Говоря о внешней электронной оболочке, атом имеет схему 3s2 3р4. Радиус атома – 0,104 нанометра.

Свойства серы в первую очередь делятся на физического типа. К нему относится то, что элемент имеет твердый кристаллический состав. Два аллотропических видоизменения – основное состояние, в котором устойчив этот элемент серы.

Первое видоизменение ромбическое, имеющее лимонно-желтую окраску. Его устойчивость ниже, чем 95,6 °С. Второй – моноклинный, имеющий медово-желтую окраску. Его устойчивость колеблется от 95,6 °С и 119,3 °С.

На фото минерал сера

Во время плавки химический элемент стает движущейся жидкостью, имеющей желтый цвет. Она буреет, достигая температуры более 160 °С. А при 190 °С цвет серы превращается в темно-коричневый. После достижения отметки 190 °С наблюдается уменьшение вязкости вещества, которое все же после нагревания 300 °С стает жидкотекучим.

Другие свойства серы:

    Практически не проводит тепла и электричества.

    Не растворяется при погружении в воду.

    Растворима в аммиаке, имеющем безводную структуру.

    Также растворима в сероуглероде и других растворителях, имеющих органическую природу.

К характеристике элемента серы важно добавить и ее химические особенности. Она является активной в этом отношении. Если серу нагреть, то она может просто объединяться практически с любым химическим элементом.

На фото образец серы, добытый в Узбекистане

За исключением инертных газов. При контакте с металлами, хим. элемент образовывает сульфиды. Комнатная температура способствует тому, что элемент может вступить в реакцию с . Увеличенная температура способствует увеличению активности серы.

Рассмотрим, как поведение серы с отдельными веществами:

    С металлами – является окислителем. Образовывает сульфиды.

    С водородом – при высоких температурах – до 200 °С происходит активное взаимодействие.

    С кислородом. Образовывается объединения оксидов при температурах до 280 °С.

    С фосфором, углеродом – является окислителем. Только при отсутствии воздуха во время реакции.

    С фтором – проявляет себя как восстановитель.

    С веществами, имеющими сложную структуру – также как восстановитель.

Месторождения и добыча серы

Основной источник для получения серы – ее месторождения. В целом во всем мире насчитывается 1,4 млрд т запасов этого вещества. Ее добывают как при открытом и подземном способе выработки, так и с помощью выплавки из-под земли.

На фото добыча серы в вулкане Кава Иджен

Если применим последний случай, то используется вода, которую перегревают и расплавляют ею серу. В бедных рудах элемент содержится примерно в 12 %. Богатых – 25% и больше.

Распространенные типы месторождений:

    Стратиформный – до 60%.

    Солянокупольный – до 35 %.

    Вулканогенный – до 5%.

Первый тип связан с толщами, несущими название сульфатно-карбонатных. При этом рудные тела, которые имеют мощность до нескольких десятков метров и с размером до сотни метров находятся в сульфатных породах.

Также эти пластовые залежи можно найти посреди пород сульфатного и карбонатного происхождения. Второй тип характеризуется залежами серого цвета, которые приурочиваются к соляным куполам.

Последний тип связывают с вулканами, имеющими молодую и современную структуру. При этом рудный элемент имеет пластообразную, линзовидную форму. В нем сера может содержаться в размере 40 %. Этот тип месторождения распространен в Тихоокеанском вулканическом поясе.

Месторождение серы в Евразии находится в Туркмении, в Поволжье и других местах. Породы серы находят возле левых берегов Волги, которые тянутся от Самары. Ширина полосы пород достигает нескольких километров. При этом их можно найти вплоть до Казани.

На фото сера в горной породе

В Техасе и Луизиане в кровлях соляных куполов находят огромное количество серы. Особо красивые Италийские этого элемента находят Романьи и Сицилии. А на острове Вулькано находят моноклинную серу. Элемент, который был окислен пиритом, нашли на Урале в Челябинской области.

Для добычи серы хим элемента используют разные способы. Все зависит от условия его залегания. При этом, конечно же, особое внимание уделяют безопасности.

Так как вместе с серной рудой скопляется сероводород, то необходимо особо серьезно подходить к любому способу добычи, ведь этот газ ядовитый для человека. Также и сера имеет свойство возгораться.

Чаще всего пользуются открытым способом. Так с помощью экскаваторов снимаются значительные части пород. Затем с помощью взрывов дробится рудная часть. Глыбы отправляются на фабрику для обогащения. Затем – на завод по плавке серы, где и получают серу из концентрата.

На фото сера в порту, привезенная морским транспортом

В случае глубокого залегания серы во многих объемах, используют метод Фраша. Сера расплавляется, находясь еще под землей. Затем, как и нефть выкачивается наружу через пробитую скважину. Такой подход основывается на том, что элемент легко плавится и имеет небольшую плотность.

Также известен способ разделения на центрифугах. Только этот способ имеет недостаток: сера получается с примесями. И тогда необходимо проводить ее дополнительную очистку.

В некоторых случаях используют скважный метод. Другие возможности добычи серного элемента:

    Пароводяной.

    Фильтрационный.

    Термический.

    Центрифугальный.

    Экстракционный.

Применение серы

Большая часть добытой серы уходит, чтоб изготовить серную кислоту. А роль этого вещества очень огромная в химическом производстве. Примечательно, что для получения 1 тонны серного вещества необходимо 300 кг серы.

Бенгальские огни, которые ярко светятся и имеют много красителей, также производятся с помощью серы. Бумажная промышленность – это еще одна область, куда уходит значительная часть добытого вещества.

На фото серная мазь

Чаще всего применение сера находит при удовлетворении производственных нужд. Вот некоторые из них:

    Использование в химическом производстве.

    Для изготовления сульфитов, сульфатов.

    Изготовление веществ для удобрения растений.

    Чтоб получить цветные виды металлов.

    Для придачи стали дополнительных свойств.

    Для изготовления спичек, материалов для взрывов и пиротехники.

    Краски, волокна из искусственных материалов – изготовляются при помощи этого элемента.

    Для отбеливания ткани.

В некоторых случаях элемент сера входит в мази, которые лечат кожные болезни.

Цена серы

По последним новостям необходимость в сере активно растет. Стоимость на российский продукт равняется 130 долларам. На канадский вариант – 145 долларов. А вот в Ближнем Востоке цены возросли до 8 долларов, что привело к стоимости в 149 долларов.

На фото крупный экземпляр минерала сера

В аптеках можно найти молоту в порошок серу по цене от 10 до 30 рублей. К тому же есть возможность купить ее оптом. Некоторые организации предлагают по невысокой цене приобрести гранулированную техническую газовую серу .

Содержание статьи

СЕРА, S (sulfur), неметаллический химический элемент, член семейства халькогенов (O, S, Se, Te и Po) – VI группы периодической системы элементов. Cера, как и многие ее применения, известны с далекой древности. А.Лавуазье утверждал, что сера – это элемент. Сера жизненно необходима для роста растений и животных, она входит в состав живых организмов и продуктов их разложения, ее много, например, в яйцах, капусте, хрене, чесноке, горчице, луке, волосах, шерсти и т.д. Она присутствует также в углях и нефти.

Применение.

Около половины ежегодного потребления серы идет на производство таких промышленных химических продуктов, как серная кислота, диоксид серы и дисульфид углерода (сероуглерод). Кроме того, сера широко используется в производстве инсектицидов, спичек, удобрений, взрывчатых веществ, бумаги, полимеров, красок и красителей, при вулканизации каучука . Ведущее место в добыче серы занимают США, страны СНГ и Канада.

Распространенность в природе.

Сера встречается в свободном состоянии (самородная сера). Кроме того, имеются огромные запасы серы в виде сульфидных руд, прежде всего руд свинца (свинцовый блеск), цинка (цинковая обманка), меди (медный блеск) и железа (пирит). При извлечении металлов из этих руд освобождаются от серы обычно обжигом в присутствии кислорода, при этом образуется диоксид серы(IV), который часто выбрасывается в атмосферу без использования. Кроме сульфидных руд достаточно много серы встречается в виде сульфатов, например, сульфата кальция (гипс), сульфата бария (барит). В морской воде и многих минеральных водах присутствуют растворимые в воде сульфаты магния и натрия. В некоторых минеральных водах встречается сульфид водорода (сероводород). В промышленности серу можно получать как побочный продукт процессов в плавильных, коксовых печах, при нефтепереработке, из топочных или природных газов. Из природных подземных отложений серу добывают, расплавляя ее перегретой водой и доставляя на поверхность сжатым воздухом и насосами. Во фраш-процессе извлечения серы из сероносных отложений на установке в виде концентрических труб, запатентованной Г.Фрашем в 1891, сера получается чистотой до 99,5%.

Свойства.

Сера имеет вид желтого порошка или хрупкой кристаллической массы без запаха и вкуса и нерастворима в воде. Для серы характерны несколько аллотропных модификаций. Наиболее известны следующие: кристаллическая сера – ромбическая (самородная сера, a -S) и моноклинная (призматическая сера, b -S); аморфная – коллоидная (серное молоко) и пластическая; промежуточная аморфно-кристаллическая – сублимированная (серный цвет).

Кристаллическая сера.

Кристаллическая сера имеет две модификации; одну из них, ромбическую, получают из раствора серы в сероуглероде (CS 2) испарением растворителя при комнатной температуре. При этом образуются ромбовидные просвечивающие кристаллы светложелтого цвета, легко растворимые в CS 2 . Эта модификация устойчива до 96° С, при более высокой температуре стабильна моноклинная форма. При естественном охлаждении расплавленной серы в цилиндрических тиглях вырастают крупные кристаллы ромбической модификации с искаженной формой (октаэдры, у которых частично «срезаны» углы или грани). Такой материал в промышленности называется комовая сера. Моноклинная модификация серы представляет собой длинные прозрачные темножелтые игольчатые кристаллы, также растворимые в CS 2 . При охлаждении моноклинной серы ниже 96° С образуется более стабильная желтая ромбическая сера.

Некристаллическая сера.

В дополнение к этим кристаллическим и аморфным формам существует промежуточная форма, известная как серный цвет или сублимированная сера, которая получается конденсацией паров серы, минуя жидкую фазу. Она состоит из мельчайших зерен, имеющих центр кристаллизации и аморфную поверхность. Эта форма медленно и не полностью растворяется в CS 2 . После обработки аммиаком для очистки от таких примесей, как мышьяк, получается продукт, известный в медицине как промытая сера, которая используется аналогично коллоидной сере.

Жидкое состояние.

Молекулы серы состоят из замкнутой цепочки восьми атомов (S 8). Жидкая сера обладает необычным свойством: с повышением температуры ее вязкость увеличивается. Ниже 160° С сера – типичная жидкость желтоватого цвета, ее состав соответствует формуле S 8 и обозначается l -S. С повышением температуры кольцевые молекулы S 8 начинают разрываться и соединяться друг с другом, образуя длинные цепи (m -S), цвет жидкой серы становится темнокрасным, вязкость возрастает, достигая максимума при 200–250° С. При дальнейшем повышении температуры жидкая сера светлеет, длинные цепи рвутся, образуя короткие, с меньшей способностью к переплетению, что приводит к меньшей вязкости.

Газ.

Сера кипит при 444,6° C, образуя оранжево-желтые пары, состоящие преимущественно из молекул S 8 . С повышением температуры окраска паров переходит в темнокрасную, затем в палевую, а при 650° C в соломенно-желтую. При дальнейшем нагревании молекулы S 8 диссоциируют, образуя равновесные формы S 6 , S 4 и S 2 при разных температурах. И, наконец, при >1000° С пары состоят практически из молекул S 2 , а при 2000° С – из одноатомных молекул.

Химические свойства.

Сера – типичный неметалл. На внешней электронной оболочке у нее шесть электронов, и она легче присоединяет электроны других элементов, чем отдает свои. Со многими металлами реагирует с выделением тепла (например, при соединении с медью, железом, цинком). Она соединяется и почти со всеми неметаллами, хотя не так энергично.

Соединения.

Диоксид серы

образуется при сжигании серы на воздухе, в частности, при обжиге сульфидных руд металлов. Диоксид серы – бесцветный газ с удушающим запахом. Это ангидрид сернистой кислоты, он легко растворяется в воде с образованием сернистой кислоты. Диоксид легко сжижается (т. кип. –10° C) и его хранят в стальных цилиндрах. Диоксид используют в производстве серной кислоты, в холодильных установках, для отбеливания текстиля, древесной массы, соломы, свекловичного сахара, для консервации фруктов и овощей, для дезинфекции, в пивоваренных и пищевых производствах.

Сернистая кислота

H 2 SO 3 существует только в разбавленных растворах (менее 6%). Это слабая кислота, образующая средние и кислые соли (сульфиты и гидросульфиты). Сернистая кислота – хороший восстановитель, реагируя с кислородом образует серную кислоту. Сернистая кислота находит несколько областей применения, среди которых – обесцвечивание шелка, шерсти, бумаги, древесной массы и аналогичных веществ. Она используется как антисептик и консервант, особенно для предотвращения брожения вина в бочках, для предотвращения ферментации зерна при извлечении крахмала. Кислоту используют и для сохранения продуктов. Наибольшее значение из ее солей имеет гидросульфит кальция Ca(HSO 3) 2 , используемый при переработке древесной щепы в целлюлозу.

Триоксид серы

SO 3 (серный ангидрид), образующий с водой серную кислоту, представляет собой либо бесцветную жидкость, либо белое кристаллическое вещество (кристаллизуется при 16,8° С; т. кип. 44,7° С). Он образуется при окислении диоксида серы кислородом в присутствии соответствующего катализатора (платина, пентаоксид ванадия). Триоксид серы сильно дымит во влажном воздухе и растворяется в воде, образуя серную кислоту и выделяя много тепла. Его используют в производстве серной кислоты и получении синтетических органических веществ.

Серная кислота

H 2 SO 4 . Безводная H 2 SO 4 – бесцветная маслянистая жидкость, растворяет SO 3 , образуя олеум. Смешивается с водой в любых отношениях. При растворении в воде образуются гидраты с выделением очень большого количества теплоты; поэтому во избежание разбрызгивания кислоты обычно при растворении осторожно, постепенно добавляют кислоту в воду, а не наоборот. Концентрированная кислота хорошо поглощает пары воды и поэтому применяется для осушения газов. По этой же причине она приводит к обугливанию органических веществ, особенно углеводов (крахмала, сахара и т.п.). При попадании на кожу вызывает сильные ожоги, пары разъедают слизистую дыхательных путей и глаз. Серная кислота – сильный окислитель. Конц. H 2 SO 4 окисляет HI, HBr до I 2 и Br 2 соответственно, уголь – до CO 2 , серу – до SO 2 , металлы – до сульфатов. Разбавленная кислота тоже окисляет металлы, стоящие в ряду напряжений до водорода. H 2 SO 4 – сильная двухосновная кислота, образующая средние и кислые соли – сульфаты и гидросульфаты; большинство ее солей растворимы в воде, за исключением сульфатов бария, стронция и свинца, малорастворим сульфат кальция.

Серная кислота – один из важнейших продуктов химической промышленности (производящей щелочи, кислоты, соли, минеральные удобрения, хлор). Ее получают главным образом контактным или башенным способом по принципиальной схеме:

Бóльшая часть получаемой кислоты идет на производство минеральных удобрений (суперфосфат, сульфат аммония). Серная кислота служит исходным сырьем для получения солей и других кислот, для синтеза органических веществ, искусственных волокон, для очистки керосина, нефтяных масел, бензола, толоуола, при изготовлении красок, травлении черных металлов, в гидрометаллургии урана и некоторых цветных металлов, для получения моющих и лекарственных средств, как электролит в свинцовых аккумуляторах и как осушитель.

Тиосерная кислота

H 2 S 2 O 3 структурно аналогична серной кислоте за исключением замены одного кислорода на атом серы. Наиболее важным производным кислоты является тиосульфат натрия Na 2 S 2 O 3 – бесцветные кристаллы, образующиеся при кипячении сульфита натрия Na 2 SO 3 с серным цветом. Тиосульфат (или гипосульфит) натрия используется в фотографии как закрепитель (фиксаж).

Сульфонал

(CH 3) 2 C(SO 2 C 2 H 5) 2 – белое кристаллическое вещество, без запаха, слабо растворимое в воде, является наркотиком и используется как седативное и снотворное средство.

Сульфид водорода

H 2 S (сероводород) – бесцветный газ с резким неприятным запахом тухлых яиц. Он несколько тяжелее воздуха (плотность 1,189 г/дм 3), легко сжижается в бесцветную жидкость и хорошо растворим в воде. Раствор в воде является слабой кислотой с рН ~ 4. Жидкий сероводород используют как растворитель. Раствор и газ широко применяют в качественном анализе для отделения и определения многих металлов. Вдыхание незначительного количества сероводорода вызывает головную боль и тошноту, большие количества или непрерывное вдыхание сероводорода вызывают паралич нервной системы, сердца и легких. Паралич наступает неожиданно, в результате нарушения жизненных функций организма.

Монохлорид серы

S 2 Cl 2 – дымящая масляная жидкость янтарного цвета с едким запахом, слезоточивая и затрудняющая дыхание. Она дымит во влажном воздухе и разлагается водой, но растворима в сероуглероде. Монохлорид серы – хороший растворитель для серы, иода, галогенидов металлов и органических соединений. Монохлорид используется для вулканизации каучука, в производстве типографской краски и инсектицидов. При реакции с этиленом образуется летучая жидкость, известная как горчичный газ (ClC 2 H 4) 2 S – токсичное соединение, используемое как боевое химическое отравляющее вещество раздражающего действия.

Дисульфид углерода

CS 2 (сероуглерод) – бледножелтая жидкость, ядовитая и легко воспламеняющаяся. CS 2 получают синтезом из элементов в электрической печи. Вещество нерастворимо в воде, имеет высокий коэффициент светопреломления, высокое давление паров, низкую температуру кипения (46° C). Сероуглерод – эффективный растворитель жиров, масел, каучука и резин – широко используют для экстракции масел, в производстве искусственного шелка, лаков, резиновых клеев и спичек, уничтожения амбарных долгоносиков и одежной моли, для дезинфекции почв.

Сера (лат. – Sulfur, S) – макроэлемент. В нашем организме ее довольно много. Вся она входит в состав многих органических соединений. Формирует структуру белков, активирует ферменты, повышает иммунитет. Это положительно сказывается на состоянии всех тканей и систем органов.

История открытия

Этот неметалл был известен человечеству с древнейших времен. Его применяли в бытовых, медицинских, и военных целях. Соединения серы использовали для отбеливания тканей, лечения кожных заболеваний, в производстве косметических средств.

Входила в состав греческого огня, зажигательного вещества, предназначавшегося для уничтожения неприятеля. Она шла на изготовление черного дымного пороха, который помимо военных целей нашел применение в производстве фейерверков.

Не обошлось и без мистики. Алхимики использовали серу для поисков философского камня. Как и всякое горючее вещество, ее считали даром божьим. Сгорание её в атмосфере сопровождалось образованием сернистого ангидрида, SO 2 . Этот удушливый газ обладал неприятным запахом. Точно так же неприятен был и другой газ – сероводород, H 2 S, источавший аромат тухлых яиц. По тогдашним представлениям такие неприятные запахи могли исходить только от самого дьявола.

В старину серу выплавляли из металлических руд, в состав которых она входила. При нагревании руды выделялось вещество, и застывало в виде светло-желтых кристаллов. Происхождение названия точно не известно. Полагают, что лат. Sulfur берет свое название от индоевропейского слова, обозначающего горючее вещество. То же самое касается и славянского «сера». Хотя некоторые считают его производным от старославянского «сира», светло-желтый.

Физические и химические свойства

В таблице Менделеева S значится под №16, и расположена в 16 группе, в 3 периоде. Ее атомная масса равна 32. На внешней орбите атома серы вращаются 6 электронов. До наполнения орбиты не хватает 2 электронов.

При взаимодействии с некоторыми веществами она присоединяет эти 2 электрона, являясь при этом двухвалентной. Но радиус атома серы сравнительно большой. Поэтому она может не только присоединять, но и отдавать электроны, и ее валентность колеблется от 2 до 6.

В обычном состоянии S представляет собой твердые, но хрупкие светло-желтые кристаллы с температурой плавления 112,5 0 С и плотностью около 2 г/см 3 . Молекула состоит из 8 атомов, и по конфигурации напоминает корону. В зависимости от режима нагревания она приобретает несколько аллотропных модификаций – разновидностей, отличающихся физическими свойствами и молекулярной структурой.

Сера не растворима в воде, но хорошо растворяется в ряде органических растворителей, в т.ч. в спирте и в бензине. Очень плохо проводит тепло и электрический ток. В природе может встречаться как в чистом виде (самородная сера), так и в виде соединений, сульфидов и сульфатов. Серосодержащие соединения входят в состав горных пород, растворены в воде морей, озер. Земная кора содержит 4,3 Х 10 -3 % серы. По этому показателю среди других элементов таблицы Менделеева она занимает 15 место. Однако в глубжележащих слоях земли, в мантии, её значительно больше.

Физиологическое действие

Казалось бы, какой может быть толк для нашего здоровья от горючего вещества, многие соединения которого обладают неприятным запахом, и оказывают удушающее действие. Но ведь сера является макроэлементом, и ее содержание в организме взрослого человека составляет около 140 г. Больше только двух других макроэлементов – кальция и фосфора.

Данное вещество в нашем организме вовсе не является балластом. Ведь Природа ничего не делает зря, каждый шаг ее продуман, и каждый элемент играет свою роль. Но какая роль у серы? Никакая. Тогда какие позитивные эффекты она оказывает? Все.

Парадокс этот лишь кажущийся. Да, сама по себе, взятая в чистом виде, сера, возможно, и не приносит пользу. Зато в соединениях она проявляет себя во всей своей красе. Достаточно упомянуть о сульфгидрильных группах. Эти группы (тиоловые группы, SH-группы) образованы остатками аминокислоты цистина.

Это протеиногенная аминокислота, т.е., та, что входит в состав белков. Сульфгидрильные группы, как следует из названия и обозначения, состоят из атомов водорода и серы. Две соседние SН-группы образуют т.н. дисульфидные мостики или дисульфидные группы (S-S-группы), состоящие из двух атомов серы.

Вот эти дисульфидные группы формируют структуру белков. Каждый белок по сути своей является полипептидом – соединением большого количества пептидов, образованных аминокислотными остатками. Последовательность пептидов в цепи – это первичная структура. Цепь спирально закручивается – это вторичная структура. Спирально закрученная цепь может принимать различные формы (нить, клубок) – это третичная структура. Наконец, молекулы ряда белков могут быть образованы не одной, а несколькими полипептидными цепями, которые соединяются между собой в строго определенных местах. Это четвертичная структура белка.

Третичная и четвертичная структуры определяют пространственную конфигурацию или конформацию белковой молекулы. Именно от конформации зависят свойства белка. Под действием температуры, химических соединений, и других фактов третичная и четвертичная структуры нарушаются. Данный процесс именуют денатурацией белка. Денатурированный белок утрачивает свои свойства.

Сера в составе сульфгидрильных групп и дисульфидных мостиков формирует своего рода жесткий каркас, который помогает молекуле белка сохранить конформацию. Благодаря этому белок сохраняет свойства.

Известно, что ферменты, эти катализаторы биохимических реакций, являются белками. Следовательно, сера помогает ферментам сохранить их активность. И это действительно так. Под действием повреждающих факторов дисульфидные мостики разрушаются, и фермент инактивируется.

Ферменты – это не полностью белки. В них присутствует небелковая часть, кофермент. В роли коферментов могут выступать витамины, витаминоподобные вещества, другие органические соединения, и даже металлы (металлоферменты). Сульфгидрильные группы обеспечивают связь апофермента (беловой составляющей фермента) и кофермента.

Ценность серы не ограничивается формирование сульфгидрильных групп и дисульфидных мостиков. Она входит в состав многих других биологически активных веществ. К серосодержащим аминокислотам помимо вышеупомянутого цистеина и его производного цистина относятся тауирн и метионин. Таурин – составная часть таурохолевой кислоты, одного из желчных компонентов. А производное метионина, S -Метилметионин, более известный как вит. U, оказывает антиульцерогенное действие – предотвращает развитие язвенной болезни желудка и 12-перстной кишки.

В составе этих соединений S регулирует функцию систем органов, и влияет на жизненно важные процессы:

Сердечно-сосудистая система

  • нормализует артериальное давление (АД) и предотвращает развитие гипертонической болезни
  • укрепляет сосудистые стенки
  • предупреждает развитие сосудистого атеросклероза
  • повышает силу сердечных сокращений.

Кровь

  • стимулирует синтез эритроцитов
  • в составе гемоглобина обеспечивает транспорт кислорода и углекислого газа
  • нормализует свертывание крови
  • предотвращает патологическое тромбообразование.

Дыхательная система

  • предотвращает спазм бронхов
  • улучшает газообмен в легочных альвеолах.

Пищеварительная система

  • участвует в нейтрализации токсинов печенью и их последующем выведении с желчью через кишечник
  • укрепляет слизистые оболочки ЖКТ (желудочно-кишечного тракта)
  • предотвращает развитие воспалительных процессов и язвообразования
  • эмульгирует жиры и улучшает их всасывание в тонком кишечнике
  • облегчает всасывание других питательных веществ (нутриентов) в ЖКТ
  • улучшает перистальтику ЖКТ
  • позитивно влияет на состояние физиологической микрофлоры кишечника, синтезирующей витамины группы В
  • улучшает перистальтику ЖКТ, способствует формированию каловых масс.

Нервная система

  • улучшает мозговой кровоток, препятствует формированию тромбов в мозговых сосудах
  • позитивно влияет на эмоционально-волевую сферу
  • улучшает мышление и память
  • нормализует сон
  • замедляет возрастные дегенеративные изменения с исходом в болезнь Альцгеймера
  • оказывает противосудорожное действие.

Опорно-двигательный аппарат

  • повышает мышечную силу и выносливость
  • укрепляет связочный аппарат, кости суставные связки
  • уменьшает интенсивность суставных и мышечных болей
  • снижает риск костных переломов, а при состоявшихся переломах ускоряет срастание костных отломков
  • предотвращает развитие артритов.

Кожа и придатки

  • повышает прочность и эластичность кожи
  • аналогичным образом действует на волосы, предотвращая их выпадение
  • в составе меланина защищает кожу от повреждающего действия солнечных лучей
  • ускоряет заживление раневых повреждений кожи
  • замедляет процессы естественного старения с появлением морщин, растяжек, пигментных пятен.

Мочеполовая система

  • наряду с другими факторами регулирует процессы фильтрации и реабсорбции (обратного всасывания) в почечных канальцах с образованием мочи
  • способствует удалению с мочой токсических веществ и продуктов обмена
  • предотвращает появление тканевых отеков
  • у мужчин обеспечивает сперматогенез, у женщин – овуляцию, нормализует менструальный цикл
  • в родах в составе окситоцина повышает сократительную активность матки, предотвращает развитие кровотечений в родах и в послеродовом периоде
  • у обоих полов формирует либидо.

Обмен веществ

  • в составе ферментов и гормонов участвует во всех видах обмена: белковом, углеводном, жировом (липидном), и водно-солевом
  • регулирует анаболизм и катаболизм (синтез и расщепление) белков
  • предотвращает ожирение и сахарный диабет
  • нормализует кислотно-основной баланс
  • предотвращает чрезмерное закисление (ацидоз) и ощелачивание (алкалоз) в тканях при различных патологических процессах.

Другие эффекты

Сера включена в состав антител-иммуноглобулинов, обеспечивающих специфический гуморальный иммунитет против патогенных бактерий, вирусов, грибков. Кроме того, она входит в состав лизоцима. Этот фермент в организме человека тоже уничтожает патогенные бактерии. S включена в состав многих антиоксидантных систем. Она угнетает свободнорадикальное окисление, в ходе которого повреждаются мембраны клеток.

Благодаря этому макроэлементу поврежденные клеточные мембраны восстанавливаются. Она уменьшает тяжесть воспалительных реакций с болью и повышением температуры. Она угнетает все 3 фазы воспаления:

  1. альтерацию (повреждение)
  2. экссудацию (появление жидкостного выпота)
  3. пролиферацию (патологический клеточный рост).

S повышает устойчивость организма к действию ионизирующей радиации, и снижает риск появления злокачественных опухолей. В общем, сера объединила в себе все позитивные черты ферментов, аминокислот, витаминов, в состав которых она входит.

Суточная потребность

Организму взрослого человека для нормальной жизнедеятельности необходимо 0,5-1,2 г. серы. Хотя некоторые считают, что потребность в этом макроэлементе значительно выше. Приводят цифры 3-4 г, и даже 4-5 г. Вероятно, многое зависит от состояния здоровья и образа жизни. Интенсивные занятия спортом, физические нагрузки, восстановление после тяжелых заболеваний и переломов, беременность – все это повышает потребность в S.

Причины и признаки дефицита

Специфических причин, приводящих только лишь к дефициту серы, не существует. Недостаток этого макроэлемента может быть связан с малым количеством серосодержащих аминокислот. Некоторые из них, в частности, метионин, являются для нас незаменимыми, и поступают в организм только в составе пищи.

Но недостаток метионина сам по себе вряд ли приведет к снижению уровня серы в организме. Ведь этот макроэлемент присутствует во многих животных и растительных продуктах, и к его дефициту может привести разве что полное голодание или жесткие ограничительные диеты.

Среди других причин:

  • тяжелые заболевания
  • повышенные физические нагрузки
  • болезни ЖКТ, дисбактериоз
  • беременность
  • врожденный дефицит некоторых ферментов, ответственных за усваивание серосодержащих продуктов.

Признаки дефицита столь же неспецифичны, как и его причины. Пациенты могут жаловаться на общую слабость, низкую работоспособность. Этому же способствует снижение мышечного тонуса и силы. Со стороны опорно-двигательного аппарата отмечается остеопороз, частые артрозы и артриты.

Возрастает риск сердечно-сосудистых заболеваний (гипертоническая болезнь, атеросклероз), ожирения, сахарного диабета, а также онкологических заболеваний. Из-за низкого иммунитета появляется восприимчивость к инфекциям. В результате пищеварительных расстройств ухудшается усваивание других нутриентов. Дети отстают в росте и в развитии.

Продукты содержащие серу

Больше всего серы находится в пище, богатой белком, где она включена в состав аминокислот. Поэтому основными поставщиками этого макроэлемента для нас являются животные продукты – мясо и мясные субпродукты, прежде всего, печень. Но и в растительных белках, содержащихся в бобовых, зерновых, орехах, её тоже немало.

Продукт Содержание, мг/100 г
Мясо кролика 1050
Рыба (горбуша, камбала, сардина) 1050
Курица, куриные яйца 1050
Перепелиные яйца 200
Индейка, печень индейки 248
Говядина 230
Говяжья печень 239
Арахис 350
Твердые сорта сыра 260
Соя 245
Баранина 230
Свинина 230
Свиная печень 187
Сушеные абрикосы 170
Сушеный персик 240
Ячмень 120
Кофе 110
Какао 200
Чай 215

Также сера в виде сульфатов и сероводорода присутствует в минеральных водах. Правда, сульфатные воды принимают в строго определенных целях для лечения расстройств ЖКТ, где они оказывают желчегонное и послабляющее действие. Что касается сероводородных вод, они и вовсе не предназначены для приема внутрь. Их используют наружно в качестве ванн.

Синтетические аналоги

В медицинских целях используют очищенную, неочищенную, и коллоидную серу. Очищенная сера (Sulfur depuratum) или Серный цвет (Flos sulfuris) представляет собой нерастворимый в воде желто-лимонный порошок. Очищенная оказывает комплексное действие:

Препараты очищенной серы могут применяться как внутрь, в виде порошка, так и наружно, в виде присыпок и мазей. Очищенная S для употребления внутрь показана при расстройствах ЖКТ, сопровождающихся запорами, а также при частых ангинах, бронхитах, и других простудных заболеваниях.

Любопытный факт: некогда, еще в советские времена, была инъекционная форма очищенной серы – Сульфозин. Его использовали в качестве пирогенной терапии.

Внутримышечные инъекции Сульфозина сопровождались резким скачком температуры. По замыслу это должно было сопровождаться антимикробным эффектом и ускорением обменных процессов.

Поэтому Сульфозин использовали в лечении некоторых видов инфекций, в частности, сифилиса, а также при органических расстройствах ЦНС. Но самую громкую и недобрую славу препарат приобрел после его использования в психиатрии. Инъекции Сульфозина (на сленге – сульфы) очень болезненны.

Поэтому к ним прибегали для устранения психомоторного возбуждения у душевнобольных, а также для «лечения» инакомыслящих. В настоящее время терапия Сулфозином признана неэффективной и варварской, и препарат остался в прошлом.

Коллоидная сера (Sulfur colloidale) также используется в дерматологической практике. Будучи водорастворимой, она более эффективна, чем очищенная и осажденная.

В лечении кожных заболеваний, а также некоторых видов химических ожогов, хорошо себя зарекомендовал другой серосодержащий препарат – Натрия тиосульфат. Но показания к применению Натрия тиосульфата не ограничиваются только лишь кожей.

Его принимают внутрь и вводят внутривенно как антидот (противоядие) при отравлении солями тяжелых металлов. Натрия тиосульфат назначают при аллергиях, некоторых заболеваниях опорно-двигательного аппарата. Доказана его результативность в лечении определенных форм женского бесплодия.

Сероводород, будучи токсичным, в терапевтических концентрациях тоже позитивное влияет на организм. Его применяют в виде ванн. Растворенный в воде газ проникает через кожу, и оказывает лечебное действие.

Сероводородные ванны показаны при заболеваниях кожи, ЖКТ, опорно-двигательного аппарата, мужской и женской репродуктивной системы. Их принимают в рамках комплексного лечения гипертонической болезни, сахарного диабета.

Помимо этого сера включена в состав многих других препаратов – БАДов, гомеопатических средств, косметики.

Метаболизм

Значительная часть S поступает в организм в составе серосодержащих аминокислот. Некоторое количество может быть представлено неорганической формой, в виде солей серной и сернистой кислот, сульфатов и сульфитов.

Органическая сера всасывается в тонком кишечнике намного лучше, в то время как значительная часть неорганических соединений, так и не всосавшись, выделяется через кишечник.

Примечательно, что некоторая часть S используется микрофлорой кишечника для собственных нужд. При этом образуется газ сероводород, обладающий неприятным запахом тухлых яиц. Сероводород наряду с другими компонентами придает зловоние кишечным газам.

Сероводород может образовываться и в желудке при заболеваниях, сопровождающихся замедлением эвакуации и застоем пищи. При этом пациенты жалуются на характерную отрыжку тухлыми яйцами. В небольших концентрациях этот газ оказывает позитивное действие. При раздражении кишечника сероводородом рефлекторно запускается перистальтика.

Серосодержащие соединения способны поступать в организм через кожу и через легкие. Значительная часть макроэлемента сосредоточена в тканях, где наиболее интенсивно протекают обменные процессы. Это скелетные мышцы, миокард, печень, кости, головной мозг. В крови сера находится в гемоглобине эритроцитов и в альбумине плазмы. Хотя некоторое ее количество растворено непосредственно в плазме.

Здесь, как и в других биологических жидкостях организма, она в основном присутствует в виде сулфат-анионов, отрицательно заряженных ионов SO 4 . В других тканях она находится в органической и в неорганической форме – в виде сульфитов, сульфатов, тиоэфиров, тиолов, тиоцианатов, тиомочевины.

Довольно много S сосредоточено в коже, в основном, в коллагене и в меланине. Выводится сера преимущественно с мочой в чистом виде или в виде сульфатов.

Взаимодействие с другими веществами

Свинец, молибден, барий, селен, мышьяк, ухудшают усваивание серы. Фтор и железо, напротив, позитивно влияют на этот процесс.

Признаки избытка

Даже при чрезмерном употреблении серосодержащих продуктов добиться избытка серы в организме невозможно. Да и сама по себе в чистом виде S не токсична, чего не скажешь о серосодержащих соединениях. Некоторые из них, в т.ч. сероводород, диоксид серы, в газообразном состоянии присутствуют в промышленных выбросах в атмосферу.

Сероводород может выделяться в составе вулканических газов, или же образовываться в процессе гниения белковых субстанций. Вдыхание этих веществ приводит к печальным последствиям. Так, сероводород блокирует ферменты, осуществляющие тканевое дыхание. В этом отношении он действует подобно другим ядам, цианидам.

А диоксид серы, вступая в реакцию с атмосферной влагой, образует серную кислоту, которая при вдыхании вызывает деструкцию легочной ткани. Вдыхание серосодержащих газов в высокой концентрации быстро приводит к удушью, потере сознания, судорогам, и к гибели.

Но даже хроническая интоксикация этими веществами в малых количествах не сулит ничего хорошего. Поражается кожа и слизистые оболочки дыхательных путей, глаз, полости рта, ЖКТ.

Это проявляется хроническим бронхитом, эмфиземой легких. Со стороны глаз отмечается снижение остроты зрения, хронический конъюнктивит. На коже формируется экзема, дерматиты с покраснением и сыпью. Пациенты жалуются на общую слабость, снижение мыслительных способностей.

Поражение ЖКТ, печени, проявляется тошнотой, снижением аппетита, неустойчивым стулом. У таких пациентов велика опасность злокачественной онкологии.

Для снижения токсичности серосодержащих продуктов рекомендуется в больших количествах употреблять яйца, твердые сорта сыра, мясо птицы, жирную свинину, говядину.

Однако при употреблении пищевых продуктов подстерегает другая опасность. Дело в том, что диоксид серы в качестве консерванта присутствует во многих кондитерских изделиях, копченостях, сухофруктах, алкогольных и безалкогольных напитках, фруктовых соках. И даже длительно хранящиеся в складских помещениях «свежие» овощи и фрукты содержат этот консервант. Его обозначают как Е220. Это не что иное, как диоксид серы.

Правда, производители и реализаторы пищевой продукции уверяют, что количество Е220 в продуктах ничтожно мало, и потому он нисколько не опасен. А чтобы нанести вред здоровью, нужно съесть огромное количество такой пищи.

Но ведь рацион современного человека, проживающего в городской черте, практически полностью состоит из таких продуктов. Поэтому уверения в безопасности серосодержащих консервантов вызывают большие сомнения.