Что есть во вселенной и как она устроена. Лекция: Единство химического состава тел Вселенной и Земли Какие химические элементы входят в состав вселенной

1.2 Эволюция Вселенной. Процесс образования вещества

Был еще один момент, особый в протекании физических процессов в расширяющейся Вселенной после Большого Взрыва. Электроны и позитроны, рождаемые при высоких температурах в результате столкновения высокоэнергичных частиц, перестали создаваться, так как температура упала до нескольких миллиардов градусов. Энергии сталкивающихся частиц стало недостаточно для их образования. Имеющиеся электроны и позитроны аннигилируют, и при этом образуются фотоны. Таким образом, число фотонов увеличивается. Через какое-то время процесс аннигиляции заканчивается. Так, к концу второго периода в 5 минут заканчиваются процессы в горячей ранней Вселенной. Температура становится ниже одного миллиарда градусов. Вселенная перестает быть горячей. Поэтому наступает период совсем других процессов, который длится триста тысяч лет.

В это время еще нет атомов. Вещество Вселенной представляет собой плазму, то есть одни голые ядра без орбитальных электронов. Эта плазма «нашпигована» фотонами. Поэтому ее называют фотонной плазмой. Она является непрозрачной для фотонов. Свет своим давлением только несколько ее раскачивает, образуя «фотонный звук». Главным дирижером всего происходящего в расширяющейся Вселенной во все три периода является температура. Вселенная не только расширяется, но и одновременно (а точнее, поэтому) охлаждается. Когда температура падает до четырех тысяч градусов, наступает очередной скачок в характере процессов: начинают образовываться нейтральные атомы. Плазма перестает быть полностью ионизованной. Число нейтральных атомов увеличивается. Они образуются в результате обрастания имеющихся в плазме ядер водорода и гелия электронами. Так появляются в расширяющейся Вселенной нейтральный водород и гелий. По мере того как плазма стала превращаться в нейтральный газ, она становилась прозрачной для фотонов. Именно в этот момент, спустя триста тысяч лет после Большого Взрыва, фотоны вырвались из столь длительного плена (названного эрой фотонной плазмы) и устремились в самые удаленные уголки Вселенной. Эти качественные изменения имели далеко идущие последствия. Главное из них, видимо, то, что однородная до этого плазма, превращенная теперь в нейтральный газ, получила возможность собираться в комки. А это первый шаг к образованию галактик и вообще всех небесных тел. Почему это не могло происходить в плазме? Потому, что образованный комок плазмы запирал внутри себя фотоны, которые оказывали на него изнутри огромное давление и разбивали его. Комок не рос дальше, а, наоборот, разрушался. Плазма снова становилась однородной. Но когда фотоны, как пар из лопнувшего шара, были выпущены, ничто не препятствовало нейтральному веществу собираться в комки.

Прежде всего, возникает естественный вопрос, откуда мы знаем, что Вселенная расширяется. Это отнюдь не очевидно. Наоборот, во все эпохи считалось, что Вселенная является стационарной, то есть один раз запущенной, как часы, и важно было только выяснить, как устроен механизм этих часов. Но оказалось, что механизм Вселенной меняется со временем. Вселенная развивается, эволюционирует, то есть является нестационарной. Первым, кому это пришло в голову, был советский физик А. Фридман, работавший в 1920-е годы в Петрограде. Он строго математически решал уравнения теории тяготения А. Эйнштейна и установил, что Вселенная не может быть стационарной, она должна непрерывно меняться, эволюционировать. Если принять ее стационарность, то под действием сил притяжения она должна постепенно сжиматься. Сжатию под действием сил тяготения могут препятствовать силы, возникающие за счет круговых движений тел по своим орбитам, как это имеет место в Солнечной системе. В эллиптических галактиках вступает в силу другое противодействие - движение тел по очень вытянутым орбитам. Что касается всей Вселенной, то ни то, ни другое объяснение невозможно, так как для уравновешивания действия сил тяготения пришлось бы разгонять ее до скоростей, превышающих скорость света. А это законами физики запрещено. Получается, что силы тяготения во Вселенной уравновесить нечем.

А. Эйнштейн также занимался этой проблемой и нашел выход в том, что модифицировал уравнения теории тяготения, таким образом, что силы притяжения уравновешивались некими введенными им силами отталкивания, которые должны, по его предположению, действовать между всеми телами во Вселенной (наряду с силами притяжения). Так он несколько незаконно получил статистические решения, описывающие стационарную Вселенную. На опубликованную в конце июня 1922 года в немецком «Физическом журнале» работу Фридмана он опубликовал там же ответ, в котором указал, что он нашел в расчетах А. Фридмана ошибку, а правильные решения дают стационарную Вселенную. Только почти через год (в мае 1923 года)

А. Эйнштейна удалось убедить в правоте А. Фридмана, и он публично признал это.

В процессе образования вещества во Вселенной большая роль отводится нейтрино. На первом этапе (в первые секунды после Взрыва) нейтрино выравнивает случайно возникающие неоднородности плотности вещества во Вселенной. Это было возможно потому, что нейтрино имели большие энергии (скорости, близкие к скорости света). Но выравнивание плотности вещества происходит только в малых пространственных масштабах (по космическим понятиям). Однако с течением времени из-за расширения Вселенной нейтрино теряют свою энергию. Примерно спустя 300 световых лет после начала расширения нейтрино, попадающие в сгущение плотности (комок), уже неспособны из него выбраться, у них не хватает для этого энергии. Больше они не препятствуют образованию неоднородностей вещества Вселенной.

    Эволюция звёзд

2.1 Формирование звезд из газа

Одна из гипотез предполагает, что звезды образуются из газового вещества, того газового вещества, которое и сейчас наблюдается в Галактике. Начиная с момента, когда масса и плотность газового вещества достигают определенного, критического значения, газовое вещество под действием своего собственного притяжения начинает сжиматься и уплотняться. При этом вначале образуется холодный газовый шар. Но сжатие продолжается, и температура газового шара растет. Потенциальная энергия частиц в поле притяжения газового шара при приближении к центру становится меньше. Часть потенциальной энергии переходит в тепловую энергию.

Тогда же газовый шар нагреется, он станет отдавать тепловую энергию через излучение с поверхностных слоев. Поэтому он будет охлаждаться вначале в поверхностном слое, а затем и в более глубоких слоях. Если бы в этом газовом шаре (звезде) не появились новые источники энергии, то процесс сжатия довольно быстро привел бы к исчезновению энергии и угасанию звезды. Всю энергию унесло бы излучение. Но на самом деле процесс этот более сложный. В результате сжатия центральные области звезды разогреваются до очень высоких температур. Они расположены очень глубоко и поэтому почти не испытывают влияния охлаждения, которое вызывается излучением с поверхностных слоев. Когда же температура центральной области достигает нескольких миллионов градусов, в ней начинают протекать термоядерные реакции. Они сопровождаются выделением большого количества энергии.

Таким образом, первый период образования звезды - это период сжатия. Он длится до того момента, пока в центральной области звезды не начнут протекать термоядерные реакции. В продолжение периода сжатия температура звезды повышается. Поэтому спектральный класс звезды становится более ранним. Что же касается светимости звезды, то в период сжатия ее увеличению будут способствовать увеличение температуры поверхности, а также увеличение прозрачности разогревшегося вещества. Поэтому из звезды будет непосредственно выходить излучение более глубоких и горячих слоев. Но работает и обратный механизм. Уменьшение радиуса звезды будет уменьшать светимость. Специалисты оценили совокупное действие всех механизмов и пришли к заключению, что в период сжатия звезды все же происходит небольшое увеличение светимости звезды. Именно поэтому на диаграмме спектр - светимость эволюция в период сжатия протекает вдоль линий, которые проходят справа налево и немного поднимаются вверх. Это показано на рисунке 17. Различие линий эволюции на диаграмме определяется различием масс газовых облаков, из которых образовались звезды. Чем больше масса, тем больше светимость, тем выше на диаграмме проходит линия эволюции.

Когда период сжатия подходит к концу и внутри звезды начинают протекать температурные реакции, все звезды оказываются на главной последовательности диаграммы спектр - светимость. В термоядерной реакции водород превращается в гелий. При этом четыре протона (четыре ядра атома водорода) образуют ядро атома гелия. Получившийся излишек массы превращается в энергию: примерно 0,007 массы вещества при этой реакции превращается в энергию излучения.

Сжатие звезды прекращается потому, что от термоядерных реакций поступает энергия, которая противодействует сжатию. Она компенсирует расход энергии на излучение. Пока все будет происходить именно таким образом, звезда будет сохранять постоянными свои основные физические характеристики - радиус, температуру, светимость. Она будет оставаться на диаграмме спектр - светимость на линии главной последовательности. Но через какое-то время водород в центральной части звезды кончится. В результате радиус звезды должен увеличиться, а температура ее уменьшится. Светимость при этом несколько увеличится. Это значит, что звезда начнет смещаться с главной последовательности вправо и вверх. Скорость этого смещения зависит от скорости выгорания водорода, которая, в свою очередь, в очень сильной степени зависит от температуры. Скорость протекания термоядерных реакций приблизительно пропорциональна 15-й степени температуры! Поэтому те звезды, у которых в центральных областях достигается более высокая температура, быстрее сходят с главной последовательности и быстрее перемещаются на диаграмме вправо и вверх. С другой стороны, температура центральных областей выше у звезд с большими массами. В этих звездах сильное поле тяготения и больше потенциальная энергия тяготения. Именно эта энергия превращается при сжатии в тепловую энергию.

По указанным причинам звезды больших масс и больших светимостей сходят с главной последовательности вправо и вверх быстрее. При этом они перемещаются в направлении той части диаграммы, где расположена ветвь гигантов. На рисунке 1 показано, что звезды больших масс и, следовательно, больших светимостей эволюционируют быстрее, превращаясь в красных гигантов, когда звезды меньших масс еще только немного отошли от линии главной последовательности.

Рисунок 1. Эволюционные перемещения звезд на диаграмме спектр - светимость после исчерпания водорода в центральных областях

Наступает момент, когда весь водород в звезде-гиганте выгорел. При этом они достигнут стадии красного гиганта. Тогда сжатие их ядра, которое состоит из гелия, приведет к дальнейшему повышению температуры. Она увеличивается до значений более 100 миллионов градусов. Тогда начинается новая термоядерная реакция, в результате которой образуются ядра атома углерода из трех ядер атомов гелия. И эта реакция сопровождается потерей массы и выделением энергии излучения. В результате температура звезды увеличивается. Звезда начинает свое новое перемещение на диаграмме спектр - светимость.

А.Г.Иванов

Геология

Конспект лекций

Издательство

Пермского национального исследовательского

политехнического университета


Раздел 1 (мод. 1). ГЕОЛОГИЯ И ЕЕ СВЯЗЬ С ДРУГИМИ НАУКАМИ

Лекция 1. Введение

Вопросы лекции:

1. Связь геологии и литологии с другими науками.

2. Краткая история геологии и литологии.

Геология – наука о Земле (греч. Ge - Земля, logos –учение). В недалёком прошлом, до конца 19 века, геология представляла единую науку о происхождении Земли и её твердых наружных оболочек, их составе, историческом развитии, внутреннем строении и об органическом мире. Громадный интерес к Земле, связанный с необходимостью поисков сырья для бурно развивающейся промышленности, привёл к быстрому росту геологических знаний. В геологии стали обособляться, а затем превратились в самостоятельные науки разделы о составе Земли, её истории, рельефе, органическом мире и другие. Перечислим эти науки.

Литология – наука о составе, структуре, текстуре и происхождении осадочных пород. Современная литология состоит из трёх частей. Первая – охватывает методы и приёмы полевых и лабораторных исследований. Вторая – в объёме петрографии осадочных горных пород изучает минеральный и химический состав, структуру и текстуру пород. Третья часть, седиментологическая, анализирует общий ход и закономерности осадочного процесса.

Геохимия – наука о химическом составе Земли, законах распространенности и распределения в ней химических элементов и их миграция.

Минералогия – наука о минералах, химических соединениях элементов, образующих основу твёрдой оболочки Земли.

Кристаллография – наука о кристаллической форме минералов. Эта наука неразрывно связана с минералогией.

Петрография – наука, которая изучает горные породы, образовавшиеся в геологических процессах внутри Земли.

Геофизика – наука о физических свойствах Земли и веществ, их которых она состоит.

Инженерная геология – отрасль геологии, изучающая физические свойства горных пород в связи с инженерной деятельностью человека.

Геология полезных ископаемых – раздел геологии, изучающий условия образования и закономерности распространения месторождений полезных ископаемых.

Гидрогеология – наука о подземных водах, их качестве, распространении, передвижениях и местах возможной добычи.

Геотектоника – наука о строении, движениях деформациях и развитии твёрдых наружных оболочек Земли в связи с её развитием в целом.

Структурная геология - наука о формах залегания горных работ, причинах их возникновения и истории развития.

Палеонтология – наука, изучающая по ископаемым остаткам животный и растительный мир прошлых геологических эпох.

Все перечисленные геологические науки теснейшим образом связаны с естественными – химией, физикой, биологией и математикой.

КРАТКАЯ ИСТОРИЯ ГЕОЛОГИИ

Многовековая история геологии началась вместе с появление человека.

Первые понятия о геологии возникли в глубокой древности, с тех пор когда человек впервые взял в руки камень, сделал первый каменный топор, наконечник к метательному оружию…

Несмотря на то, что геология была вначале своего пути, уже тогда определились направления во взглядах на развитие Земли.

1. Катастрофизм – система взглядов, по которым развитие Земли представляет ряд катастроф. Это извержение вулканов, землетрясения, падение метеоритов, наводнения – всё это главные события, которые меняют облик Земли.

2. Нептунизм – (Нептун – бог моря древних греков) – учение, по которому всё на Земле образовалось из воды.

3. Плутонизм – (Плутон в греческой мифологии – бог подземного царства) - направление во взглядах на развитие Земли, связанное исключительно с её недрами.

Однако временем возникновения геологии как науки принято считать вторую половину 18 века – период зарождения и бурного развития горнодобывающей промышленности.

В России это выразилось в интенсивном накоплении геологических знаний прикладного значения по месторождениям железных и медных руд, серебро-свинцовых месторождений на Урале, Алтае и в Забайкалье, самородной серы на Украине, цветных камней на Урале.

Основоположником обобщения геологических знаний в России стал М. Ломоносов, а в Западной Европе – Д. Геттон и А.Г. Вернер.

М. Ломоносов, обобщая разрозненные знания по минералогии, горному делу, физики и химии природных явлений выдвинул идеи формирования земной поверхности за счёт взаимодействия внутренних и внешних сил, рассчитал мощность земной коры, объяснил происхождение минералов и горных пород.

Наблюдения за палеонтологическими остатками в коллекциях, поступивших с территории Европейской России позволили заложить основы метода актуализма (все явления прошлого протекали так же, как протекают аналогичные явления сейчас) «О слоях земных». В этой работе он заложил основные идеи эволюционной теории, которые позднее были развиты английским учёным Ч. Лайелем. Великий М.Ломоносов своими трудами заложил фундамент геологического учения, на котором в дальнейшем росло здание геологической науки.

Академические исследования впервые выявили первостепенную роль тщательных полевых исследований. Таким образом, был решён в пользу «плутонистов» спор о первопричине геологических процессов. На отрицании идей «катастрофистов» геологи-эволюционоисты на рубеже 18-19 веков подготовили почву для развития исторической и динамической геологии.

Российский академик П.С. Паллас, саксонец А.Г. Вернер, немецкий учёный Л. Бух, англичанин Р.И. Мурчисон в результате сбора и анализа большого количества материала к 1850 году создали предпосылки для возникновения науки геотектоники. Учение о «мобильных» геосинклиналях и «стабильных» платформах развивалось в то время Дж.Холлом, Дж. Дэном, А.П. Карпинским и др.

В это же время в геологии широкое применение находят методы физики, оптики, математики.

Г.Сорби и Г.Розенбуш применили оптический микроскоп для изучения горных пород. Е.С. Фёдоров изобрёл универсальный столик для измерения оптических свойств минералов. Д. Пратт и Дж. Эри положили начало использованию геофизических данных. Они разработали теорию изостазии (1855), согласно которой земная кора почти повсюду находится в гравитационном равновесии.

Успехи геологического картирования во второй половине 19 века создали предпосылки для геологических обобщений по отдельным районам, странам и континентам. В 1875 году была создана международная организация геологов – Международный геологический конгресс (МГК), где на сессиях обсуждались итоги геологического исследования, разрабатывались принципы международного сотрудничества по унификации геологических карт, номенклатуре горных пород, стратиграфических подразделений и др.

В России 1882 году был создан Геологический комитет, планирующий и руководивший геологическими исследованиями на территории России. Возглавлял этот комитет А.П. Карпинский.

С именем И. Мушкетова связаны исследования Средней Азии. В.А. Обручев изучал Центральную Азию и Восточную Сибирь. Значительное место в изучении геохимии, систематизации минералов занимают такие известные учёные, как А.Е. Ферсман и В.И. Вернадский.

Огромное значение в истории геологии нефти и газа имеют работы И.М. Губкина. Им была дана положительная оценка перспектив нефтегазоносности Северного Кавказа, Урало-Поволжья и Западной Сибири.

Международные геологические конгрессы 1937 и 1984 годов в СССР свидетельствуют о росте авторитета Советской геологической науки.

Большую роль в геологических исследованиях сыграли Виноградов, Хаин, Страхов, Шатский и другие учёные.

Контрольные вопросы:

1. Перечислить основные направления во взглядах на развитие Земли.

2. В каком году была создана международная организация геологов – Международный геологический конгресс (МГК)?

3. В каком году в России был создан Геологический комитет?

Лекция 2. СТРОЕНИЕ И ПРОИСХОЖДЕНИЕ ВСЕЛЕННОЙ.

СТРОЕНИЕ НАШЕЙ ГАЛАКТИКИ

Вопросы к лекции:

1. Образование Вселенной.

2. Химический состав Вселенной.

3. Земля как планета солнечной системы.

4. Форма и размер Земли.

5. Строение Земли. Земная поверхность.

6. Методы изучения внутреннего строения Земли.

7. Внешние и внутренние геосферы Земли.

8. Возникновение земной коры.

Объектом изучения геологии является планета Земля. Для изучения её необходимы знания и о других планетах, звёздах, галактиках, так как все они находятся в определённом взаимодействии начиная с момента их появления во Вселенной. Поэтому наша планета представляет собой лишь частицу космического пространства.

ОБРАЗОВАНИЕ ВСЕЛЕННОЙ

Вселенная возникла около 18-20 млрд. лет назад. До этого времени всё её вещество находилось в условиях больших температур и плотностей, которые современная физика не в состоянии описать. Такое состояние вещества называется «сингулярным». Теория расширяющейся Вселенной, или «Большого Взрыва», впервые была создана в России А.А. Фридманом в 1922 году. Суть теории: вещество, находящееся в сингулярном состоянии, подверглось внезапному расширению, которое в общих чертах можно уподобить взрыву. Вечно возникающий вопрос « А что же было до Большого взрыва», по мнению английского физика С. Хогинса, носит метафизический характер. Предыдущее состояние никак впоследствии не отразилось на нынешней Вселенной.

ХИМИЧЕСКИЙ СОСТАВ ВСЕЛЕННОЙ

Химический состав Вселенной составляет по массе ¾ водорода и ¼ гелия. Все остальные элементы не превышают в составе Вселенной даже 1%. Тяжёлые элементы возникли во Вселенной гораздо позже, когда в результате термоядерных реакций «зажглись» звёзды, а при взрывах сверхновых звёзд они оказались выброшены в космическое пространство.

Что может ожидать Вселенную в будущем? Ответ на этот вопрос заключается в установлении средней плотности Вселенной. Современное значение плотности равно 10 -29 г/см 3 , что составляет 10 -5 атомных единиц массы в 1 см 3 . Чтобы представить такую плотность, надо 1 г вещества распределить по кубу со стороной 40 тыс.км!

Если средняя плотность будет равна или несколько ниже критической плотности , Вселенная будет только расширяться, если же средняя плотность будет выше критической, то расширение Вселенной со временем прекратиться и она начнёт сжиматься, возвращаясь к сингулярному состоянию.

Спустя примерно 1 млрд. лет после Большого взрыва, в результате сжатия огромных газовых облаков стали формироваться звёзды и галактики – скопления миллионов звёзд. Любая звезда формируются в результате коллапса космического облака газа и пыли. Когда сжатие в центре структуры приведёт к очень высоким температурам, в центре «сгустка» начинаются ядерные реакции, т.е. превращение водорода в гелий с выделением огромной энергии, в результате излучения которой звезда светится. Гелий впоследствии превращается в углерод.

ЗЕМЛЯ КАК ПЛАНЕТА СОЛНЕЧНОЙ СИСТЕМЫ

Земля – часть Вселенной и наша Солнечная система одна их 100 млд. звезд в звездной Галактике, имеющей возраст около 12 млд. лет. Возраст Солнечной системы, к которой принадлежит Земля около 6 млд. лет.

Планет в солнечной системе девять. К планетам земного типа относятся Меркурий, Венера, Земля и Марс, к внешним планетам – Юпитер, Сатурн, Уран, Нептун и Плутон. Радиус Солнечной системы 5,917 млрд. км (от Земли до Солнца 149, 509 млн. км).

Планеты земного типа относительно плотные, но обладают сравнительно небольшими размерами и массой. Меркурий лишён атмосферы, на остальных планетах этого типа она есть, причём на Марсе атмосфера близка земной.

Внешние планеты имеют огромные размеры и массу, но отличаются сравнительно небольшой плотностью. Атмосферы этих планет состоят, главным образом, из метана и аммиака.

И так Солнце. Его масса 99.87% от массы системы. Крупнейшая из планет Юпитер имеет массу 0,1% от массы системы. Солнце – плазменный шар (водород 90% и гелий 10%) с температурой поверхности около 5600 0 . Все тела Системы связаны с Солнцем силой гравитационного притяжения и поэтому оказывают влияние друг на друга. Громадная масса Солнца и лучистая энергия его оказывает большое влияния на многие геологические процессы как на внутреннее ядро, так и на каменную оболочку Земли.

Вопросы происхождения Солнечной системы и Земли в процессе развития геологической мысли оставались в центре внимания ученых. Согласно воззрениям немецкого философа И.Канта образование звезд и Солнца произошло под воздействием сил притяжения. П.Лаплас развил его теорию, обогатив ее вращательным движением частиц материи в разреженной и раскаленной газообразной туманности. По гипотезе Канта – Лапласа сгустки материи образовали зародыши планет. Постепенно охлаждаясь планеты, как и Земля охлаждалась и деформировалась. Эта достаточно прогрессивная идея с развитием астрономических исследований позднее оказалась неудовлетворительной.

Большинство ученых считают, что возраст Вселенной составляет 14 млрд лет. Также считается доказанной теория Большого взрыва, однако его причины пока описываются только гипотезами. В частности, одна из теорий предполагает, что причиной стали колебания квантов в вакууме, а согласно теории струн причиной взрыва стало воздействие извне. В связи с этим ряд исследователей под вопрос уникальность Вселенной, считая, что их существует несколько или даже бесконечное множество, так как они образуются постоянно.

После Большого взрыва Вселенная прошла этап быстрого расширения. Считается, что в то время привычная нам материя еще не существовала. Она появилась позднее из энергии, возникшей при Большом взрыве. Первые звезды появились не ранее, чем через 500 млн лет после Большого взрыва. Нужно отметить, что процесс расширения Вселенной продолжается до сих пор.

В целом, большинство глобальных процессов Вселенной, например ее расширение, мало повлияет на жизнь на Земле в обозримом будущем.

Состав Вселенной

Как указывают ученые, основной во Вселенной - это , из него она состоит на 75%. Также основные всего окружающего пространства - это гелий, и углерод. Большую часть Вселенной занимает так называемая темная энергия и темная материя, эти субстанции мало изучены, а представления о них в основном абстрактны. Привычное вещество занимает только 5-10%.

Основная форма организации вещества во Вселенной - это звезды и планеты. Они образуют галактики - скопления, в которых небесные тела испытывают взаимное притяжение и влияют друг на друга. Эти системы отличаются по форме, например, Млечный Путь относится к спиральным галактикам.

Галактики объединяются в группы, а те, в свою очередь, в сверхскопления. Солнечная система находится в галактике Млечный Путь, которая, в свою очередь, принадлежит к сверхскоплению Девы. Нужно отметить, что Земля расположена не в центре мироздания, но и не на окраине Вселенной.

Солнце - это относительно небольшая звезда по масштабам Вселенной.

Кроме звезд и планет, во Вселенной существуют и другие объекты, например кометы. Хотя их траектория шире, чем у планет, они все же движутся по своей орбите. Например, комета Галлея пролетает рядом с Солнцем каждые 76 лет. Еще одна известная категория космических объектов - это астероиды. Они имеют меньший размер, чем планеты, а также на них отсутствует атмосфера. Астероиды могут представлять реальный риск для Земли - часть ученых считает, что исчезновение динозавров и другие изменения флоры и фауны того периода могло быть связано со столкновением Земли с этим небесным телом.




Химический элемент В почве, % В живых организмах, % кислород 4970 углерод 218 водород 0,59,9 азот 0,10,3 кальций 1,370,3 калий 1,360,3 кремний 330,15 фосфор 0,080,07 магний 0,630,07 сера 0,080,05 железо 3,80,02 алюминий 7,10,02 натрий 0,630,02 хлор 0,01 марганец 0,080,001 титан 0,460,0001 Содержание некоторых химических элементов в почве и живых организмах


Живая и неживая природа состоят из одних и тех же элементов, но эти элементы образуют разные вещества: органические – в живой природе, неорганические – в неживой.. Макроэлементы: О, С, Н, N, Mg, K, Ca, Na, P, S Микроэлементы: Fe, Al, Na, Mn, B, Cl… Элементы живой природы




СО 2 вода кислород глюкоза свет Фотосинтез – это процесс превращения неорганических веществ в органические под действием света в присутствии хлорофилла 6 СО Н 2 О C 6 H 12 O O 2 хлорофилл, свет n C 6 H 12 O 6 (C 6 H 10 O 5) n + n H 2 O ферменты крахмал глюкоза




Функции белков в организме Строительная Входят в состав ядер, цитоплазмы и мембран клеток Транспортная Участвуют в переносе питательных (белки плазмы крови) и газообразных (гемоглобин) веществ Защитная Входят в состав антител, участвуют в иммунном процессе Каталитическая Биологические катализаторы (ферменты) ускоряют химические процессы в организме Двигательная Сократительные белки мышц (актин и миозин) обеспечивают работу мышц Информационная Многие гормоны – белки, переносят информацию от желёз внутренней секреции к органам Энергетическая При расщеплении 1 г белка выделяется 17,6 к Дж


Функции углеводов в организме Запасающая Запасное питательное вещество организма – гликоген. Энергетическая Основной источник энергии для организма, при расщеплении 1 г углеводов выделяется 17,6 к Дж Строительная Входят в состав нуклеиновых кислот, образуют межклеточное вещество соединительной ткани Защитная Взаимодействуют в печени со многими ядовитыми соединениями, переводя их в безвредные и легко растворимые вещества


Функции жиров в организме Строительная Входят в состав клеточных мембран Энергетическая Используются организмом как энергетический запас, при расщеплении 1 г жира выделяется 38,9 к Дж Защитная В соединительно-тканных оболочках выполняют функцию механической защиты организма, в подкожно-жировой клетчатке служат для теплоизоляции Регуляторная Из жиров образуются некоторые гормоны и биологически активные вещества, их производные участвуют в работе синапсов нервной системы

Все многочисленные тела как живой, так и неживой природы состоят из мельчайших материальных частичек-атомов различных химических элементов. Число этих химических элементов и их единство определяются великим законом природы - периодическим законом Д. И. Менделеева. Но возникает ещё вопрос, требующий ответа. Из какого вещества, из каких элементов состоят небесные тела, звёзды и планеты? Справедлив ли закон Менделеева и для Вселенной? Да, справедлив.

Уже издавна люди наблюдали падение на землю «небесных камней» - метеоритов. В прежние времена таким камням нередко даже поклонялись, как «посланцам богов». В настоящее время мы знаем, что метеориты - это обломки других небесных тел Вселенной.

Естественно, что очень интересно выяснить, из каких химических элементов состоят «небесные камни». Многочисленные анализы метеоритов, как каменных, так и железных, показали, что осколки вещества, попадающие к нам из глубин Вселенной, состоят из тех же химических элементов, которые объединяет таблица Менделеева. Ни одного нового, неизвестного на земле элемента в составе метеоритов нет. Определён теперь и состав раскалённых небесных тел - солнца и звёзд. Об этом человеку рассказали лучи света, приходящие на Землю от далёких звёзд.

В середине прошлого века философ О. Конт, пытаясь доказать, что наше познание природы ограничено, приводил такой пример: человек никогда не узнает, из чего состоят звёзды и солнце, какова температура этих небесных тел и т. д. Ведь солнце и звёзды - это раскалённые небесные тела. Если даже предположить, что в отдалённом будущем люди построят межпланетные летательные аппараты, они всё равно не смогут приблизиться к поверхности солнца и звёзд, так как температура этих небесных тел очень высока. Наука опровергла ложные доводы этого философа. Всего несколько лет спустя после этого высказывания Конта был открыт новый плодотворный способ исследования небесных тел - спектральный анализ.

Сущность этого способа, коротко говоря, состоит в следующем: белый свет, который мы наблюдаем в жизни, при определённых условиях разлагается на цветные лучи. В этом можно убедиться при помощи очень простого опыта. Поставьте на пути луча света кусок стекла, имеющий вид клина, так называемую трёхгранную призму. Проходя через такую призму, свет меняет своё прямолинейное направление или, как говорят, преломляется в ней и одновременно разлагается на составляющие его цветные лучи. Образуется так называемый спектр цветных лучей. В спектре принято выделять семь цветов: красный, оранжевый, жёлтый, зелёный, голубой, синий и фиолетовый, переходящие друг в друга. Объясняется это явление тем, что лучи разных цветов по-разному преломляются в трёхгранном куске стекла - менее других отклоняются в призме красные лучи, более всех других лучей - фиолетовые.

Изучая спектры света от различных источников, учёные обнаружили одну замечательную их особенность. Свет, который исходит от раскалённых твёрдых и жидких тел, даёт всегда сплошной спектр, т. е. цветные лучи-полоски следуют в нём друг за другом и всегда в одном и том же порядке.

Совсем иной спектр получается, если свет испускают раскалённые пары какого-либо вещества. Этот спектр состоит из тонких цветных линий, разделённых тёмными полосками. Такой спектр называется линейчатым.

И вот оказывается, что каждый химический элемент имеет свой, отличный от других линейчатый спектр. Например, раскалённые пары натрия дают спектр, состоящий из двойной жёлтой линии; в спектре паров элемента лития имеются характерные - одна красная и одна оранжевая-линии; раскалённые пары калия показывают две характерные линии - красную и фиолетовую и т.д.

Открытие этой замечательной особенности - способности веществ давать свой, отличный от других спектр излучения, когда они находятся в состоянии раскалённых газов, и явилось основой необычайно чувствительного спектрального анализа*). С помощью этого способа исследования в первые же годы его применения было крыто несколько новых, ранее неизвестных химических элементов (в том числе упомянутый ранее галлий). Содержание этих элементов в земле очень рассеяно, поэтому ранее они ускользали от внимания исследователя. Способ спектрального исследования тел природы позволил обнаруживать миллионные и миллиардные доли грамма вещества.

Каждое новое простое тело давало о себе знать новым сочетанием цветных линий в спектре, новым линейчатым спектром. Спектральное исследование лучей света, идущих от небесных тел, и позволило определить, из каких элементов состоят звёзды.

Ещё до открытия линейчатых спектров было замечено, что спектр солнечных лучей, который долгое время считали сплошным, на самом деле не сплошной, а пересекается множеством тонких тёмных линий.

Разгадка этих линий была найдена после открытия спектрального анализа. Оказывается, тёмные линии образуются в спектре потому, что свет на своём пути проходит через несветящиеся пары некоторых элементов. Так, например, если свет проходит через охлаждённые пары калия, то в сплошном спектре, в местах, где располагаются цветные линии этого элемента-красная и фиолетовая, - появятся соответственно две тёмные линии. Такие спектры, состоящие из тёмных линий на фоне цветных полос, называют спектрами поглощения. Спектры поглощения и помогли узнать состав небесных тел.

Изучение спектра поглощения солнечных лучей показало, что солнечный свет проходит на своём пути через более холодные пары очень многих химических элементов - железа, водорода, гелия, натрия, кальция, кремния и других.

Где же находятся эти пары? Дать на него ответ не представляло трудности. Известно, что в атмосфере Земли нет паров всех тех элементов, о которых говорит солнечный свет. Не могут эти элементы находиться также в межзвёздном пространстве, и вот по какой причине. Спектры поглощения света, идущего от разных звёзд, различны. Значит, свет разных звёзд встречает на своём пути к Земле разные химические элементы (в виде охлаждённых, несветящихся паров). Отсюда ясно, что все те химические элементы, о которых говорят солнечный свет и свет звёзд, находятся в виде паров у самого Солнца, у самой звезды в их внешних, более холодных слоях. Обнаруженные исследованием элементы должны, следовательно, входить в состав этих небесных тел.

Изучение спектров солнечного света показало, что на Солнце больше всего водорода, а затем гелия. Открыто там много и других химических элементов (кислород, кальций, железо, магний, натрий и др.), но все вместо они составляют очень малую долю по сравнению с водородом. На Солнце не обнаружено никаких химических элементов, помимо тех, которые имеются на Земле. Это указывает на то, что небесные тела состоят из тех же веществ, что и Земля. Но на разных небесных телах вещество может находиться в самых различных состояньях.

Корона во внутренней части представляет собой чрезвычайно разреженное облако легких частичек, главным образом частичек электричества - электронов, выделяющихся из нижележащих слоев. Все они быстро движутся в разных направлениях, но преимущественно в сторону от Солнца. Скорость их так же велика, как у газа при температуре до миллиона градусов. Во внешней части короны к ним примешаны и частички пыли, которая носится в межпланетном пространстве.

Астрономы много сделали для изучения различных явлений на Солнце, в особенности во время полных солнечных затмении. Ведь те несколько минут, в течение которых происходит полное солнечное затмение, являются лучшим временем для наблюдения солнечной короны, хромосферы, протуберанцев и многих других явлений, происходящих на Солнце.

Изучение спектров небесных тел с неопровержимой убедительностью доказало материальное единство Вселенной. Многочисленные спектры Солнца, звёзд, туманностей показали, что ни на одном из небесных тел нет таких элементов, которые были бы неизвестны нам, жителям Земли, нет элементов, которые не входят в периодическую таблицу элементов Д. И. Менделеева. Так, в настоящее время на Солнце найдено уже более 60 химических элементов и все они известны нам по таблице Менделеева.

Состав нейтронных звёзд

Нейтронные звезды – это одни из наиболее интересных небесных тел в космосе. Несмотря на крайне малый размер (не более 20км в диаметре) они обладают невероятно высокой плотностью. Вследствие этого, щепотка вещества с этой звезды будет весить более 500 млн. тонн. Из-за гравитации электроны вдавливаются в протоны, переходя в нейтроны, что и послужило названием для этих звезд.

Исследуя нейтронные звезды, физики-теоретики разработали модели поведения материи в условиях высокой плотности. Итогом стала гипотеза о существовании сверхтекучей жидкости. Подобная жидкость создавалась в лабораторных условиях. Отличительными свойствами является способность течь вверх и утекать из герметично закрытых контейнеров.

Нейтронные звезды образуются в результате взрыва сверхновых и представляют собой конечный этап жизни светила. Они состоят из нейтронной сердцевины и тонкой коры вырожденного вещества с преобладанием ядер железа и никеля. Размер таких небесных тел очень мал - около 20-30 километров в диаметре. Зато плотность чрезвычайно высока.

Когда были обнаружены нейтронные звезды, ученые предположили, что материя, из которой состоят их ядра, может переходить в сверхтекучее состояние - при этом ее вязкость становится равной нулю и отсутствие трения позволяет веществу, к примеру, с легкостью просачиваться через узкие отверстия… Под воздействием высоких давлений и температур происходят процессы образования нейтрино, способствующих охлаждению звезды. Одним из свойств таких объектов является изменение их температуры и магнитного поля. Однако до недавних пор все эти предположения существовали лишь в теории и не подтверждались фактическими доказательствами.

В земных лабораториях сверхпроводимость теряет свою силу при температурах свыше 100-200С ниже нуля. Но, при высоком давлении внутри нейтронной звезды, свойства сохраняются при миллиарде градусов. Для того чтобы получить сверхтекучую жидкость, гелий охлаждают до температуры, близкой к абсолютному нулю. Но, в нейтронных звездах она может появляться при миллиарде градусов, вследствие того, что частицы при такой температуре влияют друг на друга с помощью мощного ядерного взаимодействия. В результате, кварки удерживаются внутри частиц, а нейтроны и протоны остаются внутри атомного ядра. Достаточно долго ученые не могли определить значение критической температуры, но теперь она известна и составляет от 500 миллионов до миллиарда градусов Цельсия.

Итак, ядро нейтронной звезды состоит из сверхтекучей нейтронной жидкости, вырожденных протонов и сверхпроводящих протонов, а верхний слой из твердой коры железа. Изначально температура составляет около миллиарда градусов, но звезда достаточно быстро остывает, теряя свою светимость. Но, они достаточно сильно излучают радиоволны в направлении магнитной оси.

Недавно астрофизики обратили внимание на то, что звезда Кассиопея А быстро охлаждается. Ученые смогли определить параметры падения температуры, однако у них не хватало данных наблюдений, чтобы уточнить, при какой температуре происходит переход в жидкую форму. Позже выяснилось что с 1999 года, когда была обнаружена Кассиопея А, ее температура снизилась на 4%.

Химический состав

«По химическому составу звезды, как правило, представляют собой водородные и гелиевые плазмы. Остальные элементы присутствуют в виде сравнительно незначительных «загрязнений». Средний химический состав наружных слоев звезды выглядит примерно следующим образом. На 10 тыс. атомов водорода приходится 1000 атомов гелия, 5 атомов кислорода, 2 атома азота, один атом углерода, 0.3 атома железа.
Существуют звезды, имеющие повышенное содержание того или иного элемента. Так, известны звезды с по повышенным содержанием кремния (кремниевые звезды), звезды, в которых много железа (железные звезды), марганца (марганцевые), углерода (углеродные) и т. п. Звезды с аномальным составом элементов довольно разнообразны. В молодых звездах типа красных гигантов обнаружено повышенное содержание тяжелых элементов. В одной из них найдено повышенное содержание молибдена, в 26 раз превышающее его содержание в Солнце. Вообще говоря, содержание элементов, атомы которых имеют массу, большую массы атома гелия, постепенно уменьшается по мере старения звезды. Вместе с тем, химический состав звезды зависит и от местонахождения звезды в галактике. В старых звездах сферической части галактики содержится немного атомов тяжелых элементов, а в той части, которая образует своеобразные периферические спиральные « рукава » галактики, и в ее плоской части имеются звезды, относительно богатые тяжелыми элементами. Именно в этих частях и возникают новые звезды. Поэтому можно связать наличие тяжелых элементов с особенностями химической эволюции, характеризующей жизнь звезды.
Очень интересны углеродные звезды. Это звезды относительно холодные - гиганты и сверхгиганты. Их поверхностные температуры лежат обычно в пределах 2500 - 6000С. При температурах выше 3500С при равных количествах кислорода и углерода в атмосфере большая часть этих элементов существует в форме оксида углерода CO. Некоторые типы звезд характеризуются повышенным содержанием металлов, расположенных в одном столбце периодической системы с цирконием; в этих звездах имеется неустойчивый элемент технеций 4399Тс. Ядра технеция могли образоваться из 98Мо в результате захвата нейтрона с выбрасыванием электрона из ядра молибдена или при фотопроцессе из 97Мо. Во всяком случае наличие нестабильного ядра - убедительное доказательство развития ядерных реакций в звездах».

Гипотезы о происхождении планет Солнечной системы

Вопросами происхождения планет Солнечной системы занимается космогония. Полного и исчерпывающего ответа на этот вопрос наука не дает. Пока нет возможности проверить выводы современных теорий применительно к какой-либо другой планетной системы. Рассмотрим наиболее известные космогонические гипотезы.

Гипотеза Канта-Лапласа. Кант предположил, что Солнечная система образовалась из космического облака, или «хаоса». Формируясь из сгущений, возникших в первичной туманности, планеты отдалялись от нее и от Солнца центробежными силами. Интересно, что Кант изложил эти идеи в трактате, посвященном доказательству бытия Божия. По мнению Канта «Бог вложил в силы природы тайное искусство самостоятельно развиваться из хаоса в совершенное мироздание». У Канта, таким образом, образование планет происходило из холодного газопылевого облака.

Идею Канта поддержал Лаплас, однако, согласно его гипотезе планеты образовались в результате отделения от раскаленного протосолнца газовых колец, их охлаждения и конденсации. Кольца разделялись на несколько масс, образовавших затем разные планеты.

Эта гипотеза получила название небулярной (от лат. nebula – туманность) гипотезы Канта-Лапласа. Поскольку формирование колец и планет происходило в условиях вращения туманности и действия центробежных сил, эта гипотеза называется еще и ротационной (лат. rotatio – вращение).

Гипотеза Джинса. Гипотеза Канта-Лапласа не могла объяснить также и тот факт, что момент количества движения (кинетический момент) планет приблизительно в 29 раз больше момента количества движения Солнца, а это противоречит закону сохранения кинетического момента. Для разрешения этого противоречия появились так называемые «катастрофические гипотезы», к которым относится гипотеза Джинса. Согласно ей некая звезда прошла неподалеку от Солнца и вызвала мощные приливы на нем, принявшие форму газовых струй, из которых впоследствии образовались планеты. Из этой гипотезы следовал вывод об уникальности Солнечной системы.

Гипотеза О.Ю. Шмидта. Советский ученый О.Ю. Шмидт (1891-1956) предположил, что Солнце, вращаясь вокруг центра Галактики, могло захватить материю, обладающую достаточным моментом количества движения. Расчеты Шмидта, в частности, показали, что начальный период обращения Солнца был очень большим, а затем должен был уменьшиться до 20 суток. В действительности он равен 25 суткам, и такое совпадение считается хорошим.

Ожидается, что новый свет на загадку образования Солнечной системы прольют дальнейшие исследования планет земной группы и планет-гигантов с помощью автоматических космических станций.

Первые космогонические гипотезы

Эти гипотезы появились значительно раньше, чем стали известны многие важные закономерности Солнечной системы. Значение пер­вых космогонических гипотез состояло прежде всего в том, что они пытались объяснить происхождение небесных тел как результат естественного процесса, а не одновременного акта божественного творения. Кроме этого, некоторые ранние гипотезы содержали правильные идеи о происхождении небесных тел. Такой, например, оказалась гипотеза, предложенная немецким философом И. Кантом в середине XVIII в. Кант высказал догадку о том, что Солнечная система образовалась из облака пыли.

Подробнее картина образования Солнечной системы вырисовывалась в гипотезе, предложенной в конце XVIII в. французским ученым П. Лапласом. Лаплас рассматривал большую, медленно вращающуюся туманность, состоящую из разреженного горячего газа. При сжатии туманности скорость ее вращения возрастала, туманность сплющивалась. Из ее центральной части образовалось Солнце. По мере сжатия первичного Солнца угловая скорость его вращения вокруг оси увеличивалась (в силу закона сохранения момента количества движения) и в плоскости экватора Солнца стали отделяться газовые кольца. Из концентрической системы этих колец возникли планеты.

Картина получалась настолько наглядной, что очень долгое время гипотеза Лапласа была самой популярной. Однако в XX в. от гипотезы Лапласа пришлось отказаться, так как выяснилось, что она не может объяснить, например, распределение момента количества движения в Солнечной системе.

Современные представления о происхождении планет

На первый взгляд может показаться, что по сравнению с грандиозными проблемами космологии и звездной космогонии проблема происхождения Солнечной системы не очень трудна. На самом деле это не так. Проблема происхождения планет - очень сложная и далеко еще не решенная проблема, во многом зависящая от развития не только астрономии, но и многих других естественных наук (прежде всего наук о Земле). Дело в том, что пока можно исследовать только единственную планетную систему, окружающую наше Солнце. Как выглядят более молодые и более старые системы, вероятно, существующие вокруг других звезд, неизвестно. Чтобы правильно объяснить происхождение планет, необходимо также знать, как образовались Солнце и другие звезды, потому что планетные системы возникают вокруг звезд в результате закономерных процессов развития материи. И все-таки, несмотря на трудности, ученые убеждены в том, что правильное объяснение будет найдено. Знать, как произошла наша планета, очень важно для дальнейшего развития геофизики, геохимии, геологии и других наук о Земле.

Проблемами планетной космогонии в настоящее время занимаются ученые разных стран.В формирование современной планетной космогонии значительный вклад внесли отечественные ученые. Так, например, на протяжении полувека проблемами планетной космогонии занимался академик В. Г. Фесенков (1889-1972), всегда подчеркивавший, что должна существовать тесная связь между процессом формирования Солнца и процессом формирования планет. В начале 40-х гг. с космогонической гипотезой выступил академикО. Ю. Шмидт (1891-1956).

Наиболее важные выводы планетной космогонии сводятся к следующему:

а) Планеты сформировались в результате объединения твердых (холодных) тел и частиц, входивших в состав туманности, которая когда-то окружала Солнце. Эту туманность часто называют «допланетным» или «протопланетным» облаком. Считается, что Солнце и протопланетное облако сформировались одновременно в едином процессе, хотя пока неясно, как произошло отделение части туманности, из которой возникли планеты, от «протосолнца».

Важнейшие этапы формирования планет

б) Формирование планет происходило под воздействием различных физических процессов. Следствием механических процессов стало сжатие (уплощение) вращающейся туманности, ее удаление от протосолнца», столкновение частиц, их укрупнение и т. д. Изменялась температура вещества туманности и состояние, в котором находилось вещество. Замедление вращения будущего Солнца могло быть обусловлено магнитным полем, связывающим туманность с «протосолнцем». Взаимодействие солнечного излучения с веществом протопланетного облака привело к тому, что наиболее легкие и многочисленные частицы оказались вдали от Солнца (там, где сейчас планеты-гиганты). Теория, учитывающая все эти процессы, позволяет объяснить многие закономерности в Солнечной системе.

в) Спутники планет (а значит, и наша Луна) возникли, по-видимому, из роя частиц, окружающих планеты, т. е. в конечном итоге тоже из вещества протопланетной туманности. Пояс астероидов возник там, где притяжение Юпитера препятствовало формированию крупной планеты.

Таким образом, основная идея современной планетной космогонии сводится к тому, что планеты и их спутники образовались из холодных твердых тел и частиц.

Земля как планета в основном сформировалась за время порядка 100 млн. лет и вначале тоже была холодной. Последующий разогрев Земли происходил в результате ударов крупных тел (размером с астероиды), гравитационного сжатия, распада радиоактивных элементов и некоторых других физических процессов. Постепенно в процессе гравитационной дифференциации вещества (т. е. в процессе разделения вещества, состоящего из тяжелых и легких химических элементов) в центре Земли сосредоточивались тяжелые химические элементы (железо, никель и др.), из которых образовалось ядро нашей планеты. Из более легких химических элементов и их соединений возникла мантия Земли.

Кремний и другие химические элементы стали основой формирования континентов, а самые легкие химические соединения образовали океаны и атмосферу Земли. В земной атмосфере первоначально было много водорода, гелия и таких водородсодержащих соединений, как метан, аммиак, водяной пар. Со временем водород и гелий улетучились, а с появлением растений, способных «выдыхать» кислород, земная атмосфера начала обогащаться кислородом, наличие которого представляет одно из необходимых условий существования животного мира.