Линии магнитной индукции постоянного магнита. Магнитная индукция

Магнитная индукция (обозначается символом В) главная характеристика магнитного поля (векторная величина), которая определяет силу воздействия на перемещающийся электрический заряд (ток) в магнитном поле, направленной в перпендикулярном направлении скорости движения.

Магнитная индукция определяется способностью влиять на объект с помощью магнитного поля. Эта способность проявляется при перемещении постоянного магнита в катушке, в результате чего в катушке индуцируется (возникает) ток, при этом магнитный поток в катушке также увеличивается.

Физический смысл магнитной индукции

Физически это явление объясняется следующим образом. Металл имеет кристаллическую структуру (катушка состоит из металла). В кристаллической решетке металла расположены электрические заряды — электроны. Если на металл не оказывать ни какое магнитное воздействие, то заряды (электроны) находятся в покое и никуда не движутся.

Если же металл попадает под действие переменного магнитного поля (из-за перемещения постоянного магнита внутри катушки — именно перемещения ), то заряды начинают двигаться под действием этого магнитного поля.

В результате чего в металле возникает электрический ток. Сила этого тока зависит от физических свойств магнита и катушки и скорости перемещения одного относительно другого.

При помещении металлической катушки в магнитное поле заряженные частицы металлический решетки (в кашутке) поворачиваются на определенный угол и размещаются вдоль силовых линий .

Чем выше сила магнитного поля, тем больше количество частиц поворачиваются и тем более однородным будет являться их расположение.

Магнитные поля, ориентированные в одном направлении не нейтрализуют друг друга, а складываются, формируя единое поле.

Формула магнитной индукции

где, В — вектор магнитной индукции, F — максимальная сила действующая на проводник с током, I — сила тока в проводнике, l — длина проводника.



Магнитный поток

Магнитный поток это скалярная величина, которая характеризует действие магнитной индукции на некий металлический контур.

Магнитная индукция определяется числом силовых линий, проходящих через 1 см2 сечения металла.

Магнитометры, используемые для ее измерения, называют теслометрами.

Единицей измерения магнитной индукции в системе СИ является Тесла (Тл).

После прекращения движение электронов в катушке сердечник, если он выполнен из мягкого железа, теряет магнитные качества. Если он изготовлен из стали, то он имеет способность некоторое время сохранять свои магнитные свойства.

Уже в VI в. до н.э. в Китае было известно, что некоторые руды обладают способностью притягиваться друг к другу и притягивать железные предметы. Куски таких руд были найдены возле города Магнесии в Малой Азии, поэтому они получили название магнитов .

Посредством чего взаимодействуют магнит и железные предметы? Вспомним, почему притягиваются наэлектризованные тела? Потому что около электрического заряда образуется своеобразная форма материи - электрическое поле . Вокруг магнита существует подобная форма материи, но имеет другую природу происхождения (ведь руда электрически нейтральна), ее называют магнитным полем .

Для изучения магнитного поля используют прямой или подковообразный магниты. Определенные места магнита обладают наибольшим притягивающим действием, их называют полюсами (северный и южный) . Разноименные магнитные полюса притягиваются, а одноименные - отталкиваются.

Для силовой характеристики магнитного поля используют вектор индукции магнитного поля B . Магнитное поле графически изображают при помощи силовых линий (линии магнитной индукции ). Линии являются замкнутыми, не имеют ни начала, ни конца. Место, из которого выходят магнитные линии - северный полюс (North), входят магнитные линии в южный полюс (South).

Магнитное поле можно сделать "видимым" с помощью железных опилок.

Магнитное поле проводника с током

А теперь о том, что обнаружили Ханс Кристиан Эрстед и Андре Мари Ампер в 1820 г. Оказывается, магнитное поле существует не только вокруг магнита, но и любого проводника с током. Любой провод, например, шнур от лампы, по которому протекает электрический ток , является магнитом! Провод с током взаимодействует с магнитом (попробуйте поднести к нему компас), два провода с током взаимодействуют друг с другом.

Силовые линии магнитного поля прямого тока - это окружности вокруг проводника.

Направление вектора магнитной индукции

Направление магнитного поля в данной точке можно определить как направление, которое указывает северный полюс стрелки компаса, помещенного в эту точку.

Направление линий магнитной индукции зависит от направления тока в проводнике.

Определяется направление вектора индукции по правилу буравчика или правилу правой руки .


Вектор магнитной индукции

Это векторная величина , характеризующая силовое действие поля.


Индукция магнитного поля бесконечного прямолинейного проводника с током на расстоянии r от него:


Индукция магнитного поля в центре тонкого кругового витка радиуса r:


Индукция магнитного поля соленоида (катушка, витки которой последовательно обходятся током в одном направлении):

Принцип суперпозиции

Если магнитное поле в данной точке пространства создается несколькими источниками поля, то магнитная индукция - векторная сумма индукций каждого из полей в отдельности


Земля является не только большим отрицательным зарядом и источником электрического поля, но в то же время магнитное поле нашей планеты подобно полю прямого магнита гигантских размеров.

Географический юг находится недалеко от магнитного севера, а географический север приближен к магнитному югу. Если компас разместить в магнитном поле Земли, то его северная стрелка ориентируется вдоль линий магнитной индукции в направлении южного магнитного полюса, то есть укажет нам, где располагается географический север.

Характерные элементы земного магнетизма весьма медленно изменяются с течением времени - вековые изменения . Однако время от времени происходят магнитные бури, когда в течение нескольких часов магнитное поле Земли сильно искажается, а затем постепенно возвращается к прежним значениям. Такое резкое изменение влияет на самочувствие людей.

Магнитное поле Земли является "щитом", прикрывающего нашу планету от частиц, проникающих из космоса ("солнечного ветра"). Вблизи магнитных полюсов потоки частиц подходят гораздо ближе к поверхности Земли. При мощных солнечных вспышках магнитосфера деформируется, и эти частицы могут переходить в верхние слои атмосферы, где сталкиваются с молекулами газа, образуются полярные сияния.


Частицы диоксида железа на магнитной пленке хорошо намагничиваются в процессе записи.

Поезда на магнитной подушке скользят над поверхностью совершенно без трения. Поезд способен развивать скорость до 650 км/ч.


Работа головного мозга, пульсация сердца сопровождается электрическими импульсами. При этом в органах возникает слабое магнитное поле.

Для наглядного изображения магнитного поля пользуются линиями магнитной индукции. Линией магнитной индукции называют такую линию, в каждой точке которой индукция магнитного поля (вектор ) направлена по касательной к кривой. Направление этих линий совпадает с направлением поля. Условились линии магнитной индукции проводить так, чтобы число этих линий, приходящихся на единицу площади площадки, перпендикулярной к ним, равнялось бы модулю индукции в данной области поля. Тогда по густоте линий магнитной индукции судят о магнитном поле. Там, где линии гуще, модуль индукции магнитного поля больше. Линии магнитной индукции всегда замкнуты в отличие от линий напряжённости электростатического поля , которые разомкнуты (начинаются и заканчиваются на зарядах). Направление линий магнитной индукции находится по правилу правого винта: если поступательное движение винта совпадает с направлением тока, то его вращение происходит в направлении линий магнитной индукции. В качестве примера приведём картину линий магнитной индукции прямого тока, текущего перпендикулярно к плоскости чертежа от нас за чертёж (рис. 2).

I
a
Ä
Рис. 3

Найдём циркуляцию индукции магнитного поля по окружности произвольного радиуса a , совпадающей с линией магнитной индукции. Поле создаётся током силой I , текущим по бесконечно длинному проводнику, расположенным перпендикулярно к плоскости чертежа (рис. 3). Индукция магнитного поля направлена по касательной к линии магнитной индукции. Преобразуем выражение , так какa = 0иcosa = 1. Индукция магнитного поля, создаваемого током, текущим по бесконечно длинному проводнику, вычисляется по формуле: B = m0mI/ (2pa ), то Циркуляцию вектора по данному контуру, находим по формуле (3):   , так как - длина окружности. Итак, Можно показать, что это соотношение справедливо для контура произвольной формы, охватывающего проводник с током. Если магнитное поле создано системой токов I 1, I 2, ... , I n, то циркуляция индукции магнитного поля по замкнутому контуру, охватывающим эти токи, равна

(4)

Соотношение (4) и является законом полного тока: циркуляция индукции магнитного поля по произвольному замкнутому контуру равна произведению магнитной постоянной, магнитной проницаемости на алгебраическую сумму сил токов, охватываемых этим контуром.



Силу тока можно найти, используя плотность тока j : где S -площадь поперечного сечения проводника. Тогда закон полного тока записывается в виде

(5)

МАГНИТНЫЙ ПОТОК.

По аналогии с потоком напряжённости электрического поля вводится поток индукции магнитного поля или магнитный поток. Магнитным потоком через некоторую поверхность называют число линий магнитной индукции, пронизывающих её. Пусть в неоднородном магнитном поле находится поверхность площадью S . Для нахождения магнитного потока через неё мысленно разделим поверхность на элементарные участки площадью dS , которые можно считать плоскими, а поле в их пределах однородным (рис. 4). Тогда элементарный магнитный поток Bчерез эту поверхность равен: B = B·dS· cos  = B ndS , где B - модуль индукции магнитного поля в месте расположения площадки, - угол между вектором и нормалью к площадке, B n= B· cos - проекция индукции магнитного поля на направление нормали. Магнитный поток Ф B через всю поверхность равен сумме этих потоков B, т.е.

a
S
dS
Рис. 4

(6)

поскольку суммирование бесконечно малых величин - это интегрирование.

В системе единиц СИ магнитный поток измеряется в веберах (Вб). 1 Вб = 1 Тл·1 м 2 .

ТЕОРЕМА ГАУССА ДЛЯ МАГНИТНОГО ПОЛЯ

В электродинамике доказывается следующая теорема: магнитный поток, пронизывающий произвольную замкнутую поверхность, равен нулю , т.е.

Это соотношение получило название теоремы Гаусса для магнитного поля. Эта теорема является следствием того, что в природе не существует "магнитных зарядов" (в отличие от электрических) и линии магнитной индукции всегда замкнуты (в отличие от линий напряжённости электростатического поля, которые начинаются и заканчиваются на электрических зарядах).

РАБОТА ПО ПЕРЕМЕЩЕНИЮ ПРОВОДНИКА С ТОКОМ В МАГНИТНОМ ПОЛЕ

+
dx
Ä
e
l
C
D
I
Ä
Ä
Ä
Рис. 5

Известно, что на проводник с током в магнитном поле действует сила Ампера. Если проводник перемещается, то при его движении эта сила совершает работу. Определим её для частного случая. Рассмотрим электрическую цепь, один из участков DC которой может скользить (без трения) по контактам. При этом цепь образует плоский контур. Этот контур находится в однородном магнитном поле с индукцией перпендикулярной к плоскости контура, направленном на нас (рис. 5). На участок DC действует сила Ампера,

F = BIl· sina =BIl , (8)

где l - длина участка, I - сила тока, текущего по проводнику. - угол между направлениями тока и магнитного поля. (В данном случае= 90°иsin  = 1). Направление силы находим по правилу левой руки. При перемещении участка DC на элементарное расстояние dx совершается элементарная работа dA , равная dA = F·dx . Учитывая (8), получаем:

dA = BIl·dx = IB·dS = I·dФ B, (9)

поскольку dS = l·dx - площадь, описываемая проводником при своём движении, B=B·dS - магнитный поток через эту площадь или изменение магнитного потока через площадь плоского замкнутого контура. Выражение (9) справедливо и для неоднородного магнитного поля. Таким образом, работа по перемещению замкнутого контура с постоянным током в магнитном поле равна произведению силы тока на изменение магнитного потока через площадь этого контура.

ЯВЛЕНИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Явление электромагнитной индукции заключается в следующем: при всяком изменении магнитного потока, пронизывающего площадь, охватываемую проводящим контуром, в нём возникает электродвижущая сила . Её называют э.д.с. индукции . Если контур замкнут, то под действием э.д.с. появляется электрический ток, названный индукционным .

Рассмотрим один из опытов, проведённых Фарадеем, по обнаружению индукционного тока, следовательно, и э.д.с. индукции. Если в соленоид, замкнутый на очень чувствительный электроизмерительный прибор (гальванометр) (рис. 6), вдвигать или выдвигать магнит, то при движении магнита наблюдается отклонение стрелки гальванометра, свидетельствующее о возникновении индукционного тока. То же самое наблюдается при движении соленоида относительно магнита. Если же магнит и соленоид неподвижны относительно друг друга, то и индукционный ток не возникает. Таким образом, при взаимном движении указанных тел происходит изменение магнитного потока, создаваемого магнитным полем магнита, через витки соленоида, что и приводит к появлению индукционного тока, вызванного возникающей э.д.с. индукции.

S
Г
N
Рис. 6

ПРАВИЛО ЛЕНЦА

Направление индукционного тока определяется правилом Ленца : индукционный ток всегда имеет такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, которое вызывает этот ток . Из этого следует, что при возрастании магнитного потока возникающий индукционный ток будет иметь такое направление, чтобы порождаемое им магнитное поле было направлено против внешнего поля, противодействуя увеличению магнитного потока. Уменьшение магнитного потока, наоборот, приводит к появлению индукционного тока, создающего магнитное поле, совпадающее по направлению с внешним полем.

Для наглядного изображения магнитного поля пользуются линиями магнитной индукции. Линией магнитной индукции называют такую линию, в каждой точке которой индукция магнитного поля (вектор ) направлена по касательной к кривой. Направление этих линий совпадает с направлением поля. Условились линии магнитной индукции проводить так, чтобы число этих линий, приходящихся на единицу площади площадки, перпендикулярной к ним, равнялось бы модулю индукции в данной области поля. Тогда по густоте линий магнитной индукции судят о магнитном поле. Там, где линии гуще, модуль индукции магнитного поля больше. Линии магнитной индукции всегда замкнуты в отличие от линий напряжённости электростатического поля , которые разомкнуты (начинаются и заканчиваются на зарядах). Направление линий магнитной индукции находится по правилу правого винта: если поступательное движение винта совпадает с направлением тока, то его вращение происходит в направлении линий магнитной индукции. В качестве примера приведём картину линий магнитной индукции прямого тока, текущего перпендикулярно к плоскости чертежа от нас за чертёж (рис. 2).

I
a
Ä
Рис. 3

Найдём циркуляцию индукции магнитного поля по окружности произвольного радиуса a , совпадающей с линией магнитной индукции. Поле создаётся током силой I , текущим по бесконечно длинному проводнику, расположенным перпендикулярно к плоскости чертежа (рис. 3). Индукция магнитного поля направлена по касательной к линии магнитной индукции. Преобразуем выражение , так какa = 0иcosa = 1. Индукция магнитного поля, создаваемого током, текущим по бесконечно длинному проводнику, вычисляется по формуле: B = m0mI/ (2pa ), то Циркуляцию вектора по данному контуру, находим по формуле (3): m 0 mI , так как - длина окружности. Итак, Можно показать, что это соотношение справедливо для контура произвольной формы, охватывающего проводник с током. Если магнитное поле создано системой токов I 1, I 2, ... , I n, то циркуляция индукции магнитного поля по замкнутому контуру, охватывающим эти токи, равна

(4)

Соотношение (4) и является законом полного тока: циркуляция индукции магнитного поля по произвольному замкнутому контуру равна произведению магнитной постоянной, магнитной проницаемости на алгебраическую сумму сил токов, охватываемых этим контуром.

Силу тока можно найти, используя плотность тока j : где S -площадь поперечного сечения проводника. Тогда закон полного тока записывается в виде

(5)

МАГНИТНЫЙ ПОТОК.

По аналогии с потоком напряжённости электрического поля вводится поток индукции магнитного поля или магнитный поток. Магнитным потоком через некоторую поверхность называют число линий магнитной индукции, пронизывающих её. Пусть в неоднородном магнитном поле находится поверхность площадью S . Для нахождения магнитного потока через неё мысленно разделим поверхность на элементарные участки площадью dS , которые можно считать плоскими, а поле в их пределах однородным (рис. 4). Тогда элементарный магнитный поток Bчерез эту поверхность равен: B = B·dS· cos a = B ndS , где B - модуль индукции магнитного поля в месте расположения площадки, a - угол между вектором и нормалью к площадке, B n= B· cos a- проекция индукции магнитного поля на направление нормали. Магнитный поток Ф B через всю поверхность равен сумме этих потоков B, т.е.

a
S
dS
Рис. 4

(6)

поскольку суммирование бесконечно малых величин - это интегрирование.

В системе единиц СИ магнитный поток измеряется в веберах (Вб). 1 Вб = 1 Тл·1 м 2 .

ТЕОРЕМА ГАУССА ДЛЯ МАГНИТНОГО ПОЛЯ

В электродинамике доказывается следующая теорема: магнитный поток, пронизывающий произвольную замкнутую поверхность, равен нулю , т.е.

Это соотношение получило название теоремы Гаусса для магнитного поля. Эта теорема является следствием того, что в природе не существует "магнитных зарядов" (в отличие от электрических) и линии магнитной индукции всегда замкнуты (в отличие от линий напряжённости электростатического поля, которые начинаются и заканчиваются на электрических зарядах).

РАБОТА ПО ПЕРЕМЕЩЕНИЮ ПРОВОДНИКА С ТОКОМ В МАГНИТНОМ ПОЛЕ

+
dx
Ä
e
l
C
D
I
Ä
Ä
Ä
Рис. 5

Известно, что на проводник с током в магнитном поле действует сила Ампера. Если проводник перемещается, то при его движении эта сила совершает работу. Определим её для частного случая. Рассмотрим электрическую цепь, один из участков DC которой может скользить (без трения) по контактам. При этом цепь образует плоский контур. Этот контур находится в однородном магнитном поле с индукцией перпендикулярной к плоскости контура, направленном на нас (рис. 5). На участок DC действует сила Ампера,

F = BIl· sina =BIl , (8)

где l - длина участка, I - сила тока, текущего по проводнику. - угол между направлениями тока и магнитного поля. (В данном случаеa = 90°иsin a = 1). Направление силы находим по правилу левой руки. При перемещении участка DC на элементарное расстояние dx совершается элементарная работа dA , равная dA = F·dx . Учитывая (8), получаем:

dA = BIl·dx = IB·dS = I·dФ B, (9)

поскольку dS = l·dx - площадь, описываемая проводником при своём движении, B=B·dS - магнитный поток через эту площадь или изменение магнитного потока через площадь плоского замкнутого контура. Выражение (9) справедливо и для неоднородного магнитного поля. Таким образом, работа по перемещению замкнутого контура с постоянным током в магнитном поле равна произведению силы тока на изменение магнитного потока через площадь этого контура.

ЯВЛЕНИЕ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Явление электромагнитной индукции заключается в следующем: при всяком изменении магнитного потока, пронизывающего площадь, охватываемую проводящим контуром, в нём возникает электродвижущая сила . Её называют э.д.с. индукции . Если контур замкнут, то под действием э.д.с. появляется электрический ток, названный индукционным .

Рассмотрим один из опытов, проведённых Фарадеем, по обнаружению индукционного тока, следовательно, и э.д.с. индукции. Если в соленоид, замкнутый на очень чувствительный электроизмерительный прибор (гальванометр) (рис. 6), вдвигать или выдвигать магнит, то при движении магнита наблюдается отклонение стрелки гальванометра, свидетельствующее о возникновении индукционного тока. То же самое наблюдается при движении соленоида относительно магнита. Если же магнит и соленоид неподвижны относительно друг друга, то и индукционный ток не возникает. Таким образом, при взаимном движении указанных тел происходит изменение магнитного потока, создаваемого магнитным полем магнита, через витки соленоида, что и приводит к появлению индукционного тока, вызванного возникающей э.д.с. индукции.

S
Г
N
Рис. 6

ПРАВИЛО ЛЕНЦА

Направление индукционного тока определяется правилом Ленца : индукционный ток всегда имеет такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, которое вызывает этот ток . Из этого следует, что при возрастании магнитного потока возникающий индукционный ток будет иметь такое направление, чтобы порождаемое им магнитное поле было направлено против внешнего поля, противодействуя увеличению магнитного потока. Уменьшение магнитного потока, наоборот, приводит к появлению индукционного тока, создающего магнитное поле, совпадающее по направлению с внешним полем.

I i
Рис. 7

Пусть, например, в однородном магнитном поле находится квадратная рамка, изготовленная из металла и пронизываемая магнитным полем (рис.7). Предположим, что магнитное поле возрастает. Это приводит к увеличению магнитного потока через площадь рамки. Согласно правилу Ленца, магнитное поле, возникающего индукционного тока будет направлено против внешнего поля, т.е. вектор этого поля противоположен вектору . Применяя правило правого винта (если винт вращать так, чтобы его поступательное движение совпадало с направлением магнитного поля, то его вращательное движение даёт направление тока), находим направление индукционного тока Ii .

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ.

Закон электромагнитной индукции, определяющий возникающую э.д.с., был открыт Фарадеем опытным путём. Однако его можно получить, исходя из закона сохранения энергии.

Вернёмся к электрической цепи, приведённой на рис. 5, помещённой в магнитное поле. Найдём работу, совершаемую источником тока с э.д.с. e за элементарный промежуток времени dt , при перемещении зарядов по цепи. Из определения э.д.с. работа dA сторсторонних сил равна: dA стор = e·dq , где dq - величина заряда, протекающего по цепи за время dt . Но dq = I·dt , где I - сила тока в цепи. Тогда

dA стор = e·I·dt . (10)

Работа источника тока расходуется на выделение некоторого количества теплоты dQ и на работу dA по перемещению проводника DC в магнитном поле. Согласно закону сохранения энергии, должно выполняться равенство

dA стор = dQ + dA. (11)

Из закона Джоуля - Ленца запишем:

dQ = I 2R·dt , (12)

где R - полное сопротивление данной цепи, а из выражения (9)

dA = I·dФ B, (13)

где B- изменение магнитного потока через площадь замкнутого контура при движении проводника. Подставляя выражения (10), (12) и (13) в формулу (12), после сокращения на I , получаем e ·dt = IR·dt + dФ B. Разделив обе части этого равенства на dt , находим: I = (e – Из этого выражения следует вывод, что в цепи, кроме э.д.с. e , действует ещё какая-то электродвижущая сила ei , равная

(14)

и обусловленная изменением магнитного потока, пронизывающего площадь контура. Эта э.д.с. и является э.д.с. электромагнитной индукции или коротко э.д.с. индукции. Соотношение (14) представляет собой закон электромагнитной индукции , который формулируется: э.д.с. индукции в контуре равна скорости изменения магнитного потока, пронизывающего площадь, охватываемую этим контуром. Знак минус в формуле (14) является математическим выражением правила Ленца.

Для наглядности картины изменения вектора магнитной индукции при переходе от одной точки пространства к другой вводится понятие линий вектора магнитной индукции (силовых линий магнитного поля). Непрерывная линия, касательная к которой в любой ее точке задает направление вектора магнитной индукции , называется силовой линией магнитного поля . Густота силовых линий прямопропорциональна модулю вектора магнитной индукции.

На рисунке 7 показаны исследования магнитного поля вокруг полюсового магнита с помощью магнитных стрелок и картина силовых линий магнитного поля вокруг такого магнита.

Магнитные стрелки можно заменить железными опилками, которые намагничиваются в поле данного магнита и становятся маленькими стрелками. (На картон, который кладут на магнит, насыпают опилки. При легком потряхивании картона опилки хорошо ориентируются.)

Поле, в каждой точке которого вектор магнитной индукции постоянен по величине и направлению, называют однородным . На рисунке 8 приведены способы изображения силовых линий однородного магнитного поля, направленного вправо (а ), влево (б ), в плоскость листа от нас (в ) и из него к нам (г ).

Источником магнитного поля являются не только постоянные магниты, но и проводники с током. Картина силовых линий магнитного поля, созданного постоянным подковообразным магнитом (а ), прямым проводом с током (б ) и проволочным кольцом (в ), по которому течет ток, показана на рисунке 9. Силовые линии магнитного поля – замкнутые линии. Во внешнем пространстве постоянных магнитов они идут от северного полюса к южному. Направление силовых линий вокруг прямолинейного провода с током определяется по правилу буравчика (правовращающий винт, штопор): если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции.