Шлифование на токарных станках. Токарные станки по металлу PROMA Токарно шлифовальный станок

Специалисты машиностроительных предприятий, посещающие зарубежные выставки металлообрабатывающего оборудования, являются свидетелями успеха такого технического решения, как совмещение на одном станке нескольких технологических операций и даже процессов, причем в различных сочетаниях. Кажется, уже не осталось в производстве операций, даже самых трудносочетаемых, которые не объединили бы в попытке повысить точность и производительность обработки путем снижения числа переустановов.

Эта идея, зародившаяся давно и реально воплощенная в 1992 году фирмой Emag, представившей на выставке METAV92 вертикально-токарный станок перевернутой компоновки, стала реальной материальной силой уже спустя несколько лет. Доказательством того служат свыше 5000 станков такой компоновки, проданных на различные заводы, — главным образом автомобильные и тракторные. На ее базе стала возможной и комбинация точения, преимущественно твердого, для труднообрабатываемых сталей и сплавов твердостью свыше 45HRC, с абразивной обработкой, также впервые в мире осуществленная в 1998 году той же фирмой Emag, но уже совместно с вошедшей в ее состав фирмой Reinecker на станке мод. VSC250DS (рис. 1).

Когда преимущества очевидны

С тех пор преимущества этой компоновки стали очевидны многим другим немецким, швейцарским и итальянским фирмам, выпускающим, как токарные, так и шлифовальные станки. Для токарных центров они заключаются в возможности использования сухого и твердого точения, а в некоторых случаях и шлифования за один установ деталей небольшого диаметра (до 400 мм, только у станка G 250 фирмы Index диаметр обработки достигает 590 мм), но достаточно большой длины. Таких деталей типа зубчатых колес, различных дисков немало встречается в автомобильной промышленности.
Кроме того, повышаются производительность обработки, поскольку припуск под шлифование после точения можно довести до нескольких сотых миллиметра (реально он достигает обычно нескольких десятых), и ее точность, которая, в конечном счете, определяется шлифованием. К настоящему времени такие комбинированные станки выпускают несколько фирм, преимущественно немецких, основной сферой деятельности которых является, как показано в таблице 1, производство не только токарных центров (Emag, Index, Weisser), но и шлифовальных станков (Junker, Buderus Schleifmaschinen, Schaudt Mikrosa BWF). Их стоимость колеблется в значительных пределах и определяется, прежде всего, компоновкой, конструктивным исполнением и комплектацией.

Выставка ЕМО 2003 показала, что интерес к комбинированным станкам для твердого точения и шлифования нарастает. Наряду с фирмами Emag, Index, Weisser, Buderus, Schaudt Mikrosa BWF, ранее экспонировавшими станки для комбинированного точения и шлифования, аналогичную продукцию продемонстрировали и другие производители станочного оборудования. Например, фирма Tacchella (Италия) показала опытный образец круглошлифовального станка Concept, оснащенного 8-позиционной револьверной головкой с неподвижными инструментами (рис. 2), а фирма Meccanodora (Италия) — серийный станок Futura для твердого точения и фрезерования, а также наружного и внутреннего шлифования деталей трансмиссий. Станок Stratos М, впервые показанный фирмой Schaudt Mikrosa BWF на выставке ЕМО 2001, был дополнительно оснащен 8-позиционной револьверной головкой.

Комбинированная обработка

У деталей, проходящих через токарно-шлифовальный центр, например валов электродвигателей, в большинстве случаев не требуется шлифования всех поверхностей — в основном лишь опорных или наиболее изнашиваемых. Для остальных вполне достаточно точения. В подобных случаях, когда жесткие размерные допуски и высокое качество поверхности необходимы лишь на отдельных участках детали, полностью оправдано использование токарных станков с возможностью шлифования, тем более что обработка на них происходит за один установ. Если же у заготовки имеется множество ступеней, большая часть которых подлежит шлифованию, то ее нужно обрабатывать на шлифовальном станке с возможностью точения.

Таким образом, на шлифовальном станке обработку ведут в том случае, если:

  • заготовки выполнены из труднообрабатываемых материалов, не поддающихся или с трудом поддающихся точению;
  • требуемые допуски превосходят достижимые при точении;
  • требуемое качество поверхности настолько высоко, что его нельзя обеспечить при точении, в том числе твердом.

Токарный же станок используют для обработки, когда:

  • сложная геометрия заготовки делает обработку лезвийным инструментом с точечной режущей кромкой (например, резцом) более эффективной, чем сравнительно широким шлифовальным кругом;
  • объем снимаемого материала сравнительно велик и превышает возможности съема путем шлифования;
  • необходима обработка прерывистых поверхностей.

Для многих деталей действуют требования, предъявляемые как в первом, так и во втором случаях, поэтому сочетание на одном станке шлифования с твердым точением увеличивает его гибкость и позволяет оптимизировать каждую операцию.

Конструктивные особенности станков

Анализ представленных в таблице 1 станков свидетельствует, что подавляющее их большинство имеет вертикальную компоновку, которая для сравнительно коротких деталей (с диаметром больше длины), обычно подвергаемых точению и шлифованию, оказалась эффективнее горизонтальной. Обработка достаточно длинных валов (от 600 мм у мод. HSC250DS фирмы Emag до 1400 мм у мод. G250 фирмы Index) остается исключением и осуществляется лишь у станков горизонтальной компоновки. Кроме того, большинство станков с целью повышения их эффективности оснащено конвейерами для подачи заготовок и удаления из рабочей зоны готовых деталей. Одним из средств увеличения жесткости станков, подвергаемых при комбинированной обработке повышенным нагрузкам, является применение (у станков фирм Emag, Schaudt BWF Mikrosa и некоторых других) полимербетонных станин, обладающих хорошими демпфирующими свойствами, а также (у станков фирмы Buderus) станин из натурального гранита.

Почти все станки в стандартном исполнении снабжены более чем одним шлифовальным шпинделем, с тем, чтобы иметь возможность осуществлять как наружную, так и внутреннюю обработку. При этом механизм правки встроен непосредственно в станок. Отметим, что почти все фирмы предлагают в качестве опций линейные двигатели, причем не только по продольной оси, по которой происходит максимальное перемещение, но и по поперечной. Это означает возможность дальнейшего повышения производительности таких станков.

Разумеется, фирмы, выпускающие токарные станки, например Emag и Index, и фирмы — производители шлифовальных станков, например Junker, при общей цели — обеспечение высокой гибкости, производительности и эффективности обработки при выборе подхода к конструкции своего оборудования, в котором твердое точение сочетается со шлифованием или нао­борот, — руководствуются различны­ми соображениями. Как правило, эту конструкцию делают такой, чтобы на станке кроме точения и шлифова­ния была возможность выполнения в случае необходимости и других опе­раций.
Так, станок мод. V300 фирмы Index перевернутой компоновки с вертикаль­ным шпинделем (по образцу фирмы Emag) рассчитан на обработку широко­го ассортимента заготовок любого ти­па (отливок, поковок и т. д.). Их загруз­ка и разгрузка производится автомати­чески. Благодаря модульной конструк­ции, станок, который оснащают боль­шим количеством комбинируемых в любом порядке инструментальных го­ловок и блоков (рис. 3), предназначен­ных для выполнения различных опера­ций точения, сверления и шлифования, может работать как в мелко-, так и в среднесерийном производстве. В процессе обработки шпиндель перемеща­ет заготовку, подводя ее к различным установленным на станине инструмен­тальным блокам, которые и осуществ­ляют заданные операции точения, сверления, наружного и внутреннего шлифования. Для выполнения комби­нированного твердого точения и шлифования на станине монтируется револьверная головка с неподвижными и вращающимися инструментами. В блоке наружного шлифования используют шлифовальные круги диаметром 400 мм и шириной 40 мм из традиционных и сверхтвердых материалов, например КНБ, вращающиеся с частотой до 6000 мин -1 от привода мощностью 7,5 кВт. Их правка осуществляется автоматически. В блок встроена электромагнитная система балансировки шлифовального круга. Внутреннее шлифование осуществляется кругами из таких же материалов, но установленными на оправках с конусом HSK32 для получения максимальной точности и жесткости шлифовального шпинделя. Высокочастотный шпиндель для их вращения имеет мощность от 2 до 15 кВт и рассчитан на частоту вращения в пределах 45000-100000 мин -1 . Дополнительные операции на этом станке могут быть выполнены посредством диодного лазера, встроенного в производственный процесс для выполнения на зажатой в патроне шпинделя заготовке закалки наружных поверхностей, а также торцов и отдельных участков на внутренних поверхностях. Дополнительной операцией является также раскатывание, выполняемое на станке мод. CNC 435 фирмы Buderus.
Многофункциональные станки — наиболее успешно развивающийся в настоящее время, причем во многих аспектах, тип оборудования для лезвийной обработки — не являются чем- то особенно новым для абразивной. С помощью шлифовальных кругов, встраиваемых, например, в магазины некоторых фрезерных обрабатывающих центров, давно уже выполняют получистовую и чистовую обработку сложных поверхностей деталей из труднообрабатываемых материалов, например турбинных лопаток. Основные технологические преимущества таких центров — уменьшение количества необходимого оборудования и, соответственно, требуемых производственных площадей и числа операторов, возможность передачи готовых деталей непосредственно на сборку — сохраняются и для многофункциональных станков на базе шлифовальных. Однако у этого оборудования для комбинированной шлифовальной и токарной обработки существует ряд отличий и преимуществ. Следует отметить, в частности, существенное преобладание у него шлифовальных операций над токарными, фрезерными и сверлильными, обязательное охлаждение рабочей зоны, наличие при шлифовании в некоторых случаях механизма смены кругов. Как преимущество необходимо рассматривать и то, что при выполнении на шлифовальных станках токарных, фрезерных, резьбонарезных и других лезвийных операций достигается большая точность, чем при их выполнении на токарных и/или фрезерных, потому что в шлифовальных станках, превращаемых в многофункциональные, изначально заложена более высокая точность чем, например, в токарных, которым придают возможность шлифования. Такие станки выпускают швейцарская фирма Magerle и немецкая Junker.
Модульный станок MMS (рис. 4), впервые показанный фирмой Magerle на выставке ЕМО2003, имеет симметричную портальную конструкцию, которая вместе с шариковыми винтовыми передачами по осям координат обеспечивает его статическую и динамическую жесткость и термостабильность. Перемещения по трем осям координат (500x250x200 мм) посредством этих передач выполняет стол, что позволяет устанавливать на станке горизонтальные, вертикальные или наклонные шлифовальные головки и производить его ручную или автоматическую загрузку с четырех сторон. На выставке, в частности, был показан вариант станка с вертикальным мотор-шпинделем мощностью 30 кВт и встроенным устройством смены инструмента (пяти шлифовальных кругов диаметром 300 мм, шириной 60 мм и массой не более 20 кг или 20 кругов диаметром не более 130 мм), производимой за 3 секунды. Частота вращения кругов рекомендуется в пределах 1000-8000 мин -1 . В конусе HSK-A-100 шпинделя могут быть установлены также фрезы, сверла и другой лезвийный инструмент, что при комбинации с двухкоординатной делительной головкой и устройством смены спутников позволяет обрабатывать небольшие лопасти насосов, турбинные лопатки и другие сложные детали. Этому способствует и возможность подачи СОЖ через центр шпинделя под давлением 80 бар.
Опытный образец многофункционального станка Concept, который также впервые показала на этой выставке итальянская фирма Tacchella Macchine, представляет собой сочетание обычного круглошлифовального станка с восьмипозиционной револьверной головкой, в которой установлены неподвижные инструменты. Выполненные из КНБ два круга большого диаметра развернуты на станке относительно друг друга на 180 градусов и могут по очереди поворачиваться в рабочую зону. Станина станка выполнена в виде жесткой оребренной чугунной отливки. Перемещения по осям X и Z могут быть выполнены посредством линейных двигателей или шариковых винтовых передач. Для перемещения рабочих органов служат гидростатические направляющие. К числу недостатков этого станка можно отнести то, что у него не разделены между собой рабочие зоны точения и шлифования. В дальнейшем в револьверной головке будут, по-видимому, установлены и вращающиеся инструменты, что расширит технологические возможности станка, а число револьверных головок может быть увеличено до двух.
На станке Hardpoint серии 300 модульной конструкции фирмы Junker с наклонной станиной закаленные и незакаленные детали типа тел вращения диаметром 80 мм и такой же длины (рис. 5) кроме шлифования и хонингования кругами и головками из КНБ можно за один установ выполнять точение, сверление и развертывание, а также нарезать резьбу и удалять заусенцы. Станок реализован в четырех вариантах с числом шпинделей от двух до четырех, в которых одновременно можно обрабатывать до четырех деталей с передачей или без передачи из одного шпинделя в другой. Управление станком производится по шести осям координат от устройства ЧПУ Sinumerik 840D. Станок можно загружать вручную или автоматически.

Высокой производительности станка мод. CNC235 фирмы Buderus Scheiftechnik (рис. 6) добиваются путем установки на нем двух шпинделей, позволяющих выполнять наружное и внутреннее шлифование (специальными головками) и твердое точение (отдельными резцами или револьверной головкой) заготовок диаметром и длиной до 150 мм, а также ленточного конвейера.

Многофункциональные станки, предназначенные для твердого точения и шлифования термообработанных заготовок, пользуются достаточно высоким спросом у потребителей за рубежом и постепенно начинают проникать в Россию. Имеются сведения об установке одного такого станка (фирмы Buderus) на заводе «Волгобурмаш». Два станка мод. Stratos М было поставлено в 2004 году на ВАЗ. В то же время в Европе, США и Юго-Восточной Азии работают уже 60 таких станков. Причина столь резкой разницы заключается в недостаточном уровне развития большинства отраслей нашей промышленности и недостаточной эффективности такого сложного и дорогого оборудования в наших экономических условиях, а, следовательно, и минимального спроса на него. Поэтому в ближайшее время на российских заводах не следует ожидать появления большого количества станков для сухого точения и шлифования, разве что на отдельных предприятиях автомобильной промышленности и нескольких предприятиях, выпускающих оборудование для нефтегазовой промышленности.

Владимир Потапов
Журнал «Оборудование: рынок, предложение, цены», № 07, июль 2004 г.

Шлифовальные станки по дереву являются одним из основных производственных механизмов, используемых в деревообрабатывающей отрасли. Оборудование предназначается для шлифования деревянных поверхностей изготавливаемых в процессе производства заготовок, деталей деревянных конструкций и готовых изделий. Современные модели, представленные в каталоге, это мощные, компактные и универсальные устройства, способные осуществлять работу в длительных режимах. В зависимости от технического задания, механизмы способны выполнять обработку заготовок и изделий любой формы, включая выполнение целого ряда других технологических операций. На данной технике можно выполнять торцевание и шлифовку кромки готовой продукции.

По характеру выполняемых операций и в зависимости от производственной необходимости, все агрегаты можно разделить на следующие виды:

    оборудование плоскошлифовальное, барабанного типа;

    агрегаты для внутренней и наружной шлифовки, установки для работы с кромками;

    машины для наружного шлифования сферических и круглых поверхностей, ленточные и тарельчато-ленточные аппараты.

Каждый вид техники рассчитан на определенный технологический цикл. Переналадка механизмов осуществляется быстро и легко, благодаря широкому спектру приспособлений и оснастки.

Особенности и специфика конструкции шлифовальных станков по дереву

В каталоге можно увидеть самые разнообразные модели, отличающиеся размерами, компактностью механизма, мощностью электроустановки. Целевое назначение механизмов определяет расположение и вид установки. Крупные установки, рассчитанные на серийное производство, имеют массивное основание, устанавливаются на пол. Небольшие изделия, настольного типа предназначены для бытового использования, работы в условиях мастерских.

Большинство моделей оборудовано дополнительными приспособлениями и устройствами, обеспечивающие точность шлифовки, соблюдение необходимых размеров. Угловые упоры, шлифовальная лента или диск значительно увеличивают диапазон производственного использования данной техники. оборудованы мощными асинхронными двигателями с высоким крутящим моментом, устройствами регулировки частоты вращения вала.

На каждый станок распространяется гарантийное обслуживание, существенно увеличивающее эксплуатационный ресурс механизмов. Все машины соответствуют стандартам электротехнической безопасности, имеют необходимые сертификаты соответствие.

Современные тенденции в сфере интеграции комбинированной обработки привели к тому, что на токарных станках также можно проводить шлифование. При выходе проблемы качества на первый план всегда обращают внимание на процесс финишной обработки, который называют шлифованием – выполнение механического воздействия за несколько проходов для уменьшения исходных погрешностей. Провести чистовую обработку при помощи токарного резца с получением качества, как при применении шлифовальных головок, невозможно из-за округления режущей кромки. Также не стоит забывать, что на токарном станке при небольших подачах может возникать вибрация, которая приведет к погрешности. По этой причине даже при появлении новых материалов, которые могут выдерживать сильное воздействие на протяжении длительного времени и не менять свою форму, шлифование остается основным методом, используемым для получения поверхности высокого класса шероховатости.

Потребность в шлифовальных головках

Получение тел вращения на токарных станках проводится на протяжении последних нескольких десятилетий. Как правило, шлифование проводилось на другом оборудовании. Этот момент определил следующий технологический процесс:

  1. выполнение чернового токарного точения для снятия большого слоя металла;
  2. выполнение чистового токарного точения для подготовки детали к финишному этапу технологического процесса;
  3. финишная обработка на круглошлифовальном станке.

Подобный технологический процесс определяет увеличение затрат за счет установки специального станка для выполнения финишной обработки. При создании большой партии изделий приобретение шлифовального станка окупается, но при мелкосерийном производстве его покупка приведет к повышению себестоимости одного изделия. Выходом из ситуации можно назвать использование специальных шлифовальных головок, которые также могут применяться для получения поверхности с высоким классом шероховатости.

Особенности конструкции

Шлифовальные головки представляют собой специальную конструкцию, которая используется для значительного расширения возможностей станка токарной группы. Этот механизм условно относится к оснастке. К конструктивным особенностям можно отнести:

  1. наличие собственного электродвигателя, мощность которого может составлять от 1 квт и более. этот момент определяет то, что головка может стать оснасткой для различных моделей токарных станков. как правило, токарное оборудование имеет закрытую коробку скоростей и не имеет отдельного привода для подключения рассматриваемой оснастки;
  2. установленный электродвигатель подключается к цепи токарного станка, что определяет универсальность всей конструкции. при этом также есть трехфазная вилка для включения в отдельную цепь питания;
  3. головка имеет собственную станину, которая при модернизации может крепиться жестко вместо стандартного резцедержателя. этот момент определяет то, что оборудование позволяет получать качественные поверхности при высокой механизации процесса. при изготовлении станины используется сталь, что позволяет предотвратить вибрацию при работе за счет повышения жесткости конструкции;
  4. передача вращения проходит при помощи ременной передачи для понижения оборотов.

Конструкция довольно проста. При ее рассмотрении стоит обратить внимание на тип станины. Это связано с тем, что только определенный тип станины может подойти вместо резцедержателя к определенной модели токарного станка.

Сталь и чугун при помощи рассматриваемой оснастки могут пройти процесс финишной обработки на токарном станке. При этом можно достигнуть такой же показатель шероховатости, как и при использовании круглошлифовального оборудования. Модель 200 отличается от рассматриваемой мощностью установленного электродвигателя и максимальными диаметральными размерами устанавливаемых кругов. Подобным образом можно понизить стоимость производства деталей за счет повышения универсальности используемого оборудования. При этом отметим, что оснастка подойдет для старого и нового токарного оборудования, так как имеет универсальное применение.

Вам также могут быть интересны статьи:

Проверка токарных станков на геометрическую и технологическую точность
Подготовка фундамента для токарных станков Делительные головки для фрезерных станков

Р.Б. Марголит, Е.В. Близняков, О.М. Табаков, В.С. Цибиков

Область использования токарно-шлифовальных станков

В русле современных тенденций интеграции обработки возрос спрос на комбинированные токарные станки, на которых можно наряду с токарными выполнять шлифовальные работы. Можно сказать о появлении особой группы токарно-шлифовальных станков.

Когда на первый план выходят проблемы качества, предпочтение обычно отдают шлифованию. Шлифование (за исключением глубинного) в силу самой природы метода основано на многопроходности, при которой в наибольшей степени происходит уменьшение исходных погрешностей. Лезвийная токарная обработка выигрывает у шлифования по показателю производительности. Однако выполнять процесс резания лезвийным инструментом с малыми глубинами и малыми подачами затруднительно. При малых глубинах резец, в связи с наличием округления режущей кромки, работает с большими отрицательными передними углами у (рис.1), а при малых подачах резко возрастает вероятность возникновения вибраций. Именно по этой причине, несмотря на появление новых видов режущих материалов, успешно работающих по мягким и твердым поверхностям, не следует предполагать, что лезвийная обработка существенно сократит область использования шлифования.

Упомянутые особенности обусловливают размежевание этих двух способов обработки. Предварительную обработку тел вращения обычно выполняют методом точения на токарных, а финишную обработка тех же деталей - шлифованием на кругло-шлифовальных станках. Усугубляет размежевание также то, что в пределах одного и того же класса точности шлифовальные станки имеют более высокую точность, чем токарные.
Одновременно действует тенденция интеграции этих видов обработки, которая привела к появлению комбинированных токарно-шлифовальных станков.

1. Весьма трудоемка процедура выверки массивных крупногабаритных валов и гильз большой длины перед выполнением каждой новой операции. Такие детали не обладают высокой жесткостью и деформируются под действием сил тяжести и сил закрепления. Выверка требует от рабочего умения и навыков, естественно стремление сократить их число.

2. Наблюдается общая тенденция повышения точности токарных станков.

3. Привлекательно выполнять на различных поверхностях одной детали точение или шлифование в зависимости от требований к ним в отношении точности и шероховатости

В данной работе рассмотрен опыт Рязанского станкозавода по создания комбинированных токарно-шлифовальных станков. Ошибочным оказалось предположение, что такие станки можно получить из токарных путем дооснащения суппортов сменными шлифовальными головками. Пришлось решить несколько достаточно сложных задач.

1. Обеспечена точность продольного перемещения шлифовального круга, правда, на ограниченной длине.

2. Увеличена зона досягаемости наружных и торцовых поверхностей деталей, в том числе на валах с большим перепадом диаметров смежных ступеней.

3. Обеспечена точность вращения изделия.

4. Предложены и конструктивно обеспечены способы выверки массивных крупногабаритных деталей.

В настоящее время, когда завод освоил выпуск нескольких моделей станков этой группы (1Р693, РТ248-8, РТ318, РТ958) достаточно высокого технического уровня, спрос на них растет. Наиболее полно технологические возможности комбинированной обработки воплотились в специальном станке мод. РТ958 (рис.2) . По желанию заказчика может изменяться длина станков от трех до 12 метров, число токарных и шлифовальных суппортов, поддерживающих люнетов, подставок, облегчающих выверку.

Эффективно используют токарно-шлифовальные станки при ремонте роторов турбин различного назначения, валков металлургического и полиграфического производств, шпинделей тяжелых металлорежущих станков, валов привода гребных винтов и других крупногабаритных деталей. Поскольку предельно допустимая величина съема с ремонтируемых поверхностей невелика, удается за счет перехода от точения к шлифованию увеличить число возможных ремонтов и продлить срок службы дорогостоящих изделий. Имеется успешный опыт использования токарно-шлифовальных станков не только в ремонтном, но и в основном производстве.

Обеспечение точности продольного перемещения шлифовального круга

При шлифовании суппорт, несущий шлифовальную головку, должен перемещаться плавно, прямолинейно и без переориентации при смене направления движения подачи. В случае переориентации шлифовальный круг в одном направлении перемещается по одной траектории, а в другом - по другой. На токарных станках резец почти никогда не работает по одной наружной поверхности в двух направлениях без поперечного врезания, поэтому требования к переориентации, не являются столь жесткими, как при шлифовании.

Суппорты токарных станков, особенно тяжелых, не перемещаются столь прямолинейно, без волнообразных движений, как столы шлифовальных. Это зависит от следующего:

Каретки токарных станков по своей протяженности уступают столам шлифовальных станков;

Велика масса фартука, внецентренно прикрепленного к каретке суппорта;

Привод подачи осуществляется от рейки, размещенной вне направляющих и на большом от них удалении;

Радиальное биение ходового вала приводит к раскачиванию суппорта;

Вращающаяся сила привода подачи (даже при абсолютной прямолинейности ходового вала) раскачивает суппорт, воздействуя на него через фартук.

После ряда неудачных попыток реализовать требуемую точность продольного перемещения шлифовальной головки по всей длине направляющих станины, было принято решение осуществить перемещение не кареткой, а верхними продольными салазками специально сконструированного шлифовального суппорта. Этот суппорт является сменным и может быть установлен вместо токарного (традиционной конструкции) на поперечные салазки станка.

На рис.2 изображен станок с двумя шлифовальными суппортами (левым и правым). Каждый шлифовальный суппорт имеет нижнюю поворотную часть, продольные шлифовальные салазки с регулируемым приводом подачи, поперечные шлифовальные салазки с механизмом ручной микрометрической поперечной подачи, шлифовальную головку с приводом вращения.

Шлифование выполняют на отдельных участках ограниченной длины (300мм на станке мод. РТ958, 600мм на станке мод. РТ700). При необходимости выполнять обработку в другом месте шлифовальный суппорт перемещают по станине движением каретки. Анализ показывает, что у большинства деталей протяженность отдельных ступеней невелика, что позволяет обрабатывать ступень за одну установку каретки.

Получается, что станок имеет по два дублированных перемещения:

1) Продольное может осуществляться кареткой станка и продольными шлифовальными салазками, но перемещение салазками является более точным;

2) Поперечное может осуществляться поперечными салазками станка и поперечными шлифовальными салазками, но второе имеет более тонкий отсчет.

Также дублированы повороты вокруг вертикальной оси, но каждый из поворотов выполняет свое назначение. Поворотом продольных шлифовальных салазок регулируют конусность шлифуемого участка, поворотом шлифовальной головки устанавливают в необходимое положение ее ось.

В процессе поиска были испытаны два различных конструктивных оформления направляющих продольных шлифовальных салазок: ласточкин хвост и прямоугольные. Проверены также разнообразные материалы пары трения: чугун по чугуну; чугун по закаленной стали; бронза по закаленной стали; наполненный фторопласт по чугуну и по стали.

Результаты по точности при всех конструктивных исполнениях и сочетаниях материалов нельзя признать удовлетворительными, что дало основания отдать предпочтение покупным шариковым беззазорным направляющим качения Star фирмы Rexroth. Опасения, что такие направляющие будут хуже гасить вибрации, не подтвердились. Величина переориентации практически свелась к нулю, достигнута высокая точность обработки и шероховатость в пределах Ra 0,1 - 0,16 мкм.

Привод подачи продольных шлифовальных салазок осуществляется от индивидуального электродвигателя постоянного тока, который ременной передачей передает вращение на центрально расположенный ходовой винт. Привод обеспечивает широкий диапазон бесступенчатого регулирования скоростей перемещения, что немаловажно для получения оптимальных режимов шлифования и правки круга.

Привод перемещения поперечных салазок ручной с устройством микрометрической подачи, аналогичным тому, который применяют на круглошлифовальных станках. На дисплее цифровой индикации можно с точностью отсчета в 1 мкм наблюдать за положением рабочей кромки режущего инструмента.

С целью уменьшения вибраций, источником которых могут явлиться быстровращающиеся элементы шлифовальной головки, салазки, на которых закреплены шлифовальная головка и двигатель привода ее вращения, должны обладать повышенной жесткостью и увеличенной массой. Все сопрягаемые детали шлифовального суппорта должны быть взаимно подогнаны путем шабрения до плотного стыка. Быстровращающиеся детали не должны иметь несбалансированности. Хорошо зарекомендовал себя такой подход: с целью уменьшения несбалансированности всем рабочим и нерабочим поверхностям шкивов, оправок и планшайб придают биение, не превышающее 0,03 мм, что делает ненужным проведение специальной операции их балансирования.

Некоторые особенности круглого шлифования поверхностей

На шлифовальных станках обработку наружных и внутренних поверхностей тел вращения принято выполнять периферией шлифовального круга, а обработку торцов детали - и периферией, и торцом.

Однако, если на детали 1 (рис.3) необходимо обработать углубленные поверхности (например, опорные шейки роторов турбин различного назначения), то зона обработки (рис.3,а) может оказаться недосягаемой для периферии шлифовального круга 2. Подойти к таким углубленным поверхностям мешают элементы конструкции планшайбы 3, шлифовальной головки 4 и корпуса головки 5. Единственный выход - работать кругами больших диаметров, что, в свою очередь, требуют крупногабаритных шлифовальных головок, которые затруднительно разместить на суппортах токарных станков.

С целью кардинального решения данной проблемы предложено существенное изменение в традиционном подходе: выполнять круглое шлифование наружных поверхностей не только периферией, но и торцом круга (рис.3,б).

При шлифовании торцом круга зона досягаемости значительно расширяется, т.к. вылет рабочей части круга 2 увеличивается за счет длины оправки 3 и выступающей из корпуса 5 части шлифовальной головки 4. Практически, любые углубленные поверхности деталей становятся досягаемыми для режущего инструмента.

Возникает вопрос: почему способ, известный много лет и имеющий столь явное преимущество перед шлифованием периферией круга, не нашел широкого использования на круглошлифовальных станках? Объяснение можно найти в том, что кроме указанного преимущества круглое шлифование торцом круга обладает тремя характерными особенностями, снижающими его эффективность:

1) Производительность ниже, чем при шлифовании периферией;

2) Имеются два рабочих участка шлифовального круга слева и справа от оси его вращения, контактирующие с обрабатываемой поверхностью, далее будем называть их левая и правая стороны круга.

3) Если при обработке закрытых поверхностей длина продольного перемещения L (рис.3,б) окажется меньше двух диаметров внутренней части шлифовального круга Dк, то шлифование торцом круга станет невозможным, так как часть обрабатываемой поверхности детали, лежащей внутри круга, окажется не перекрытой, следовательно, останется необработанной.

Пониженная производительность определяется меньшей жесткостью технологической системы и меньшей протяженностью двух рабочих участков круга по сравнению с одной рабочей поверхностью при шлифовании периферией круга.

Для понимания второй особенности круглого шлифования торцом круга подробнее остановимся на сущности этого способа. Решающую роль имеет точность расположения оси вращения круга к направлению движения подачи. Они (ось и направление) должны быть строго взаимно перпендикулярными.

Правку круга выполняют алмазом, осуществляющим движение подачи по одному из рабочих участков круга слева или справа от оси его вращения. Движение подачи при правке и при шлифовании является общим. На рис.4 показан случай, когда правку круга выполнили слева от оси вращения. Если ось вращения не перпендикулярна направлению движения подачи, то торец круга в ходе правки приобретет форму конуса.

На левой стороне круга, где выполнялась правка, образуется линия, параллельная движению подачи. По этой линии слева происходит контакт круга с обрабатываемой поверхностью, а на противоположной стороне, справа, с обрабатываемой поверхностью контактирует точка.

В зависимости от отклонения перпендикулярности оси по отношению к направлению подачи линия работает либо на меньшем диаметре детали (рис.5,а), либо на большем диаметре (рис.5,б). Кроме того, левая и правая рабочие стороны круга работают с различной глубиной резания. С увеличением отклонения наступит момент, когда перепад между положением левой и правой сторон круга превысит глубину резания и тогда начнет работать только одна из сторон: левая в случае а), правая в случае б).

Если шлифование идет на проход, то определяет качество поверхности та сторона круга, которая работает на меньшем диаметре изделия. Из двух случаев, показанных на рис.4, лучшие показатели по шероховатости обработанной поверхности получатся в случае а), так как на меньшем диаметре детали работает линия, а не точка.

Описанное приводит к тому, что при шлифовании закрытых поверхностей, которое выполняется не на проход (рис.5), на обработанной поверхности образуются два участка различных диаметров. На стыке этих двух участков возникает ступенька, высота которой h зависит от неперпендикулярности оси круга к направлению движения подачи.

где D - диаметр шлифовального круга, d - угловая погрешность погрешности оси круга относительно направления подачи.

По направленности ступеньки можно судить о положении оси круга: меньший диаметр обработанной поверхности получается со стороны острого угла а между осью круга и направлением подачи. В случае

а) меньший диаметр слева, в случае б) - справа.

Характер шероховатости поверхностей обоих участков детали также будет различным. Шероховатость будет лучше на левом участке, где круг с изделием контактируют по линии (с этой стороны круга выполнялась правка). Хуже шероховатость будет на правом участке, там, где круг работает точкой.

где s - подача шлифовального круга, мм/об.

Получить требуемую шероховатость Ra 0,2 - 0,32 мкм на всем протяжении шлифованной поверхности можно, придав высокую точность перпендикулярности оси вращения круга к направлению подачи (рис.6). В этом случае при шлифовании можно наблюдать искрение одинаковой интенсивности на левой и правой рабочих сторонах круга. На обработанной поверхности проявляются не два, а три участка: первый участок, обработанный левой рабочей стороной круга; второй, на котором круг работал обеими сторонами; третий, обработанный правой рабочей стороной. Ступенька на стыке отсутствует, а шероховатость на всех трех участках примерно одинакова.

В конструкции станка предусмотрена возможность чрезвычайно тонкого регулирования положения оси шлифовального шпинделя путем поворота шлифовальной головки вокруг вертикальной оси. С помощью пары регулировочных винтов, размещенных слева и справа от оси поворота, можно тонко доворачивать головку, изменяя положение оси вращения круга. Определить положение оси можно путем пересечек индикатором, прикрепленным струбциной к оправке шлифовального круга, по прошлифованной поверхности.

Чтобы уменьшить воздействие ранее оговоренного ограничения 3), приходится работать кругами малых диаметров 80 - 100мм. Хотя для поддержания скорости резания 25 - 32 м/с необходимо иметь высокую частоту вращения круга 5000 - 7500об/мин, малогабаритные легкие шлифовальные круги даже при таких частотах вращения могут успешно работать без балансирования.

При шлифовании торцом круга углубленных цилиндрических поверхностей (см. рис.3,б) приходится работать с большими вылетами кругов, из-за чего жесткость технологической системы оказывается пониженной. Правильное решение проблемы состоит в сочетании оптимальной длины конической по форме оправки и увеличенного вылета шлифовальной головки из корпуса. Нужно придерживаться правила: максимальная длина оправки не должна превышать расстояния между подшипниками шлифовальной головки. Исходя из этого, следует отдавать предпочтение увеличению длины шлифовальной головки, а не оправки. Повышению жесткости также способствует увеличение диаметра шлифовальной головки, но при диаметре головки, большем, чем диаметр шлифовального круга, возникают ограничения в достижении углубленных поверхностей.

Обеспечение точности вращения изделия

Точность вращения изделия обеспечивается точностью вращения шпинделей передней и задней бабок, точностью вращения роликов поддерживающих люнетов и правильностью исходной выверки заготовки. Заготовку зажимают кулачками двух четырехкулачковых патронов передней и задней бабок.

Опыт завода показал, что наилучшие результаты достигаются, когда задняя бабка станка имеет шпиндельный узел, который по показателям жесткости и точности вращения шпинделя не уступает передней. Это обеспечивают следующим:

1) конструкция и размеры шпиндельного узла идентичны узлу передней бабки;

2) шпиндель имеет фланец для установки зажимного патрона;

3) в качестве радиальных опор шпинделя использованы подшипники серии 3182000 второго класса точности;

4) путем смещения при сборке внутренних колец в подшипниках создают натяг, обеспечивающий высокую жесткость.

Проверку точности вращения шпинделей токарных станков обычно осуществляют косвенно путем выявления радиальных и торцовых биений посадочных поверхностей под установку зажимных патронов и центров. При этом оценивают одновременно точность вращения оси и точность расположения относительно этой оси посадочных поверхностей шпинделя. Однако точность обработки на токарно-шлифовальных станках с закреплением заготовки в кулачках зажимных патронов никак не связана с точностью расположения этих поверхностей. Целесообразней с помощью специальной регулируемой оправки контролировать точность вращения оси шпинделя в соответствии с проверкой 4.11.2. ГОСТ18097-93 «Станки токарно-винторезные и токарные. Основные размеры. Нормы точности».

Оправку (рис.8) корпусом 1 прикрепляют к фланцу торца шпинделя станка. Положение стержня 2 регулируют торцовыми винтами 3 и радиальными 4 до получения минимально возможного биения у торца шпинделя и на определенном расстоянии от торца. Завод разработал конструкцию регулируемых оправок и оснастил производство для всех используемых размеров концов шпинделей.

Нормы, регламентированные ГОСТом, неоправданно уравнены с требованиями к биению, выявленному обычными оправками. Вероятно, авторы ГОСТа считали, что выверка регулируемых оправок до минимального биения - процедура трудоемкая и оставили запас на погрешность контроля. Опыт показывает, что при некотором навыке выверку можно осуществить с минимальной погрешностью и судить по показаниям измерительного прибора об истинной точности вращения шпинделя. На заводе установлена норма биения 4 мкм.

В конструкции шпиндельного узла использованы регулируемые роликовые подшипники типа 3182000 второго класса точности. Зазоры в подшипниках уменьшают до нуля. Ролики люнетов также опираются на подшипники второго класса точности, допустимое биение рабочей части роликов не должно превышать 5 мкм.

Выверка и закрепление обрабатываемых заготовок

Известно, что выверка массивной нежесткой заготовки является чрезвычайно трудоемкой процедурой. Если в станке не предусмотреть никаких конструктивных решений, то выверка и закрепление заготовки превратится в сверхсложную задачу, успешное решение которой не по силам даже квалифицированным умельцам.

Заготовка деформируется под действием сил тяжести и закрепления, что вынуждает преодолевать две трудности.

1. Провисание центральной части длинной заготовки, закрепленной кулачками патрона за концы, составляет несколько десятых долей миллиметра. В то же время, у ротора турбины, допускаемое радиальное биение большинства поверхностей относительно общей оси рабочих шеек, которые необходимо обрабатывать, не должно превышать 0,02 - 0,03 мм, т.е. должно быть в 30 - 40 раз меньшим.

2. При закреплении заготовки кулачками патрона передней бабки ее ось наверняка отклонится от оси станка. Фактическая величина отклонения тем больше, чем дальше удаление от патрона. Попытка закрепить второй конец заготовки кулачками патрона задней бабки сопряжена с искривлением оси заготовки.

Разработана и реализована технология надежной выверки и закрепления крупногабаритных нежестких заготовок. Эта технология осуществима при наличии в конструкции станка двух шпиндельных бабок (передней и задней), оснащенных четырехкулачковыми зажимными патронами, двух подставок и поддерживающих люнетов. Число люнетов выбирает заказчик в зависимости от длины станка и характера обрабатываемых на станке заготовок. Подставки имеют призмы, на которые свободно укладывают заготовку, их оси лежат в одной плоскости с осью станка. Призмы можно регулировать по высоте.

Оба конца заготовки первоначально выверяют соосно с осью станка. Приведем два возможных варианта выверки.

1. К каждому из концов заготовки крепят индикаторы и обкатывают ими по наружным поверхностям корпусов зажимных патронов. Чтобы исключить влияние биения корпуса патрона, заготовку и патрон одновременно поворачивают на одинаковый угол.

2. К патрону и заготовке крепят соответственно лазерные излучатель и приемник. Величину несоосности выявляют при одновременном провороте шпинделя и заготовки. Лазерные приборы для контроля соосности изготавливает ряд инофирм (Pergam, Германия; Fixturlaser и SKF, Швеция).

Только после того, как оба конца заготовки, окажутся соосными с осями шпинделей передней и задней бабок станка, можно приступить к закреплению заготовки кулачками патронов. Зажим совмещают с окончательной выверкой, доводя радиальное биение отдельных поверхностей заготовки до минимально допустимой величины (5 мкм по рабочим поверхностям, несколько больше по остальным). После выверки призмы подставок отводят от заготовки, а если подставки мешают обработке, то их снимают со станка.

Ролики поддерживающих люнетов нужно устанавливать на одну или две необрабатываемые в данной операции поверхности, которые имеют высокую точность формы (круглость). В противном случае погрешность заготовки будет передана обрабатываемой поверхности.

Режущий инструмент, режимы обработки, достигнутая точность

В качестве режущего инструмента можно рекомендовать применение шлифовальных кругов с достаточно крупным размером зерна, например, 40. Наибольшей универсальностью обладают круги из электрокорунда белого твердостью СМ2, которыми можно успешно шлифовать различные материалы разной твердости.

Такие характеристики кругов позволят достичь высокой производительности шлифования при предварительных и хороших результатов по шероховатости при чистовых рабочих ходах, выполненных с использованием чистовой правки круга. Подробнее о чистовой правке будет рассказано в следующем разделе

Табл. 1 Режимы шлифования торцом круга

Параметры обработки

Размер­ ность

Величины

Предварительная обработка

Чистовые рабочие ходы

Скорость вращения изделия:

м/мин

15 - 30

10 - 20

Поперечная подача:

мм

0,01

0,005

Продольная подача:

мм/об изделия

2 - 6

1 - 2

Заправленный на режиме чистовой правки круг не обладает высокой режущей способностью, поэтому им следует делать не более двух рабочих ходов при малой глубине и один - два выхаживающих хода без поперечной подачи.

При необходимости увеличить производительность продольную подачу можно поднять до половины ширины рабочей стороны круга при шлифовании торцом и половины ширины круга при шлифовании периферией.

Поперечную подачу при предварительном шлифовании можно осуществлять на каждый одинарный ход круга, а при чистовых рабочих ходах - только раз на двойной ход. Станок имеет автоматический цикл шлифования от упора к упору. Еще более широкие возможности раскрываются при оснащении станка устройством ЧПУ с восстановлением положения режущей кромки круга после правки. Устройство ЧПУ или, по меньшей мере, устройство цифровой индикации, позволяют повысить производительность и точность обработки.

При шлифовании шеек роторов, выполненном в ходе испытаний нескольких станков мод. РТ958, достигнута на участке длиной 220 мм следующая точность:

1) Разноразмерность диаметров в продольном сечении - 5 мкм,

2) Разноразмерность диаметров в поперечном сечении - 10 мкм,

3) Соосность с другими поверхностями - 20 мкм.

Допуск разноразмерности составляет 20 мкм, соосности - 30 мкм.

Правка шлифовального круга

Процесс шлифования требует систематических правок, т.к. стойкость круга мала. В качестве правящего инструмента используют алмазы в оправе. Новый круг заправляют с целью ликвидации биения его рабочих поверхностей.

Конструкция станка должна обеспечить выполнение ряда условий:

1. Устройство правки должно обладать высокой жесткостью во избежание возникновения при правке отжимов алмаза и вибраций.

2. Должны быть обеспечены легкость и удобство размещения устройства правки в зоне работы круга.

3. Привод подач должен обеспечивать возможность осуществления правки на двух режимах (табл.2):

а) На режиме ускоренной подачи и большой глубины для выкрашивания затупившихся абразивных зерен;

б) На режиме чистовой правки перед осуществлением финишных рабочих ходов. При чистовой правке с малыми подачами (продольной и поперечной) алмаз не выкрашивает зерна круга, а перерезает. Даже крупнозернистый шлифовальный круг становится гладким, и, независимо от его зернистости, можно получить хорошую шероховатость (Ra 0,1 - 0,32 мкм), правда, режущая способность круга ухудшается.

4. Устройства ЧПУ или цифровой индикации значительно повышают производительность труда, так как появляется возможность быстрого выхода круга в позицию правки и его возврата после правки в место встречи с заготовкой, а также компенсации величины правки.

Табл.2 Режимы правки

Подача при правке

Режим правки

Шероховатость, Ra, мкм

Продольная подача, мм/об круга

Поперечная подача

Мм/ход

Число ходов

Ускоренная (обычная правка)

0,05 - 0,1

0,03 - 0,1

3 - 4

1,25

малая (чистовая

Правка)

0,01

0,01

1 - 2

0,2 - 0,32

Хорошо зарекомендовал себя вариант крепления правящего алмаза непосредственно к обрабатываемой детали. Съемное устройство правки охватывает одну из шеек детали лентой или цепью, крепление осуществляется винтовым зажимом. Вершину алмаза устанавливают в плоскости, в которой круг контактирует с обрабатываемой поверхностью. С этой целью на горизонтальную площадку алмазодержателя можно установить уровень. Самому алмазу целесообразно придать наклон к этой плоскости примерно на 10 - 15 градусов. Такое расположение обеспечивает как бы самозатачивание алмаза, так как при его повороте в держателе повернется и площадка затупления. Алмаз начнет работать новой вершиной.

Система охлаждения и защитные экраны

Система подачи СОЖ оснащена устройствами для очистки, как от металлических, так и неметаллических частиц - продуктов износа и правки круга. Недостаточно ограничиться использованием магнитных сепараторов.

Защитные экраны предназначены для предохранения работающих от брызг смазочно-охлаждающей жидкости и осколков шлифовального круга в случае его разрушения. В то же время элементы конструкции не должны ухудшать обзор зоны обработки и правки круга и затруднять подвод шлифовальных кругов к обрабатываемым поверхностям. Неплохо проявили себя съемные и переставные щитки и гибкие навесные элементы в виде кожаной и резиновой «лапши».

Выводы

1. Токарно-шлифовальные станки - это особый класс станков, область использования которых будет расширяться. Незаменимы эти станки при ремонте крупногабаритных массивных деталей.

2. В конструкции станков необходимо иметь переднюю и заднюю шпиндельные бабки, имеющие одинаковые характеристики точности и жесткости.

3. Целесообразно оснащать станки специальными сменными токарными и шлифовальными суппортами, которые устанавливают на одни и те же поперечные салазки станка. Шлифование выполняют на ограниченной длине обрабатываемой заготовки.

4. Во многих случаях эффективно шлифование наружных поверхностей торцом круга. Таким кругом можно достичь практически любой углубленной поверхности заготовки, что не всегда удается при шлифовании периферией круга.

5. Направляющие шлифовального суппорта должны обеспечивать прямолинейное перемещение салазок на всей длине хода без переориентации. Наилучшие результаты получены при использовании направляющих качения.

6. Держатель правящего алмаза должен обладать повышенной жесткостью, место правки круга должно совпадать с местом контакта круга с обрабатываемой поверхностью. Заслуживает внимания крепление алмаза на заготовке.

7. Должна быть обеспечена возможность правки круга на двух режимах: при увеличенной подаче и при медленной подаче алмаза относительно круга.

8. Оснащение станка устройством ЧПУ или цифровой индикацией позволяет повысить производительность труда и точность обработки.

9. Закреплению крупногабаритных нежестких деталей должна предшествовать выверка их положения относительно осей обеих бабок. Разработана технология выверки и закрепления таких деталей.

10. Разработана методика шлифования торцом круга, которое имеет в ряде случаев преимущество перед шлифованием периферией.

11. Система подачи СОЖ должна быть оснащена устройствами для очистки жидкости от металлических и неметаллических частиц.

Список литературы

1. Свидетельство на полезную модель №17295 РФ. Станок специальный токарный.

Обработка стальных изделий может состоять из нескольких этапов, отличающихся технологической схемой и применяемым оборудованием. Для придания изделию или заготовке окончательной формы используют шлифовальные станки по металлу. Несмотря на конструкционные различия они имеют практически одинаковые функции и параметры.

Область применения шлифовальных станков

Процесс шлифования необходим для формирования окончательных размеров и параметров шероховатости детали. Во время этой работы с помощью абразивных материалов происходит поэтапное удаление слоев металла с заготовки.

Дополнительно выполнение этой процедуры позволит избавиться от незначительных дефектов, улучшит внешний вид изделия и повысит его антикоррозийные свойства. Шлифовка представляет собой постепенное снятие тонкого слоя стружки путем контакта материала с абразивным инструментом. Вращение резания инструмента является главным движением в оборудовании. Обработка может выполняться периферией абразивного компонента или его торцом.

В зависимости от конфигурации заготовки и требуемых параметров ее шлифовки различают следующие способы обработки:

  • наружное. Применяется для придания внешней поверхности требуемой формы;
  • внутреннее. Актуально для изделий с глухими или сквозными отверстиями. Абразив выполняет обработку внутренней части;
  • профильное. Необходимо для шлифования изделий сложной формы.

Для выполнения каждого типа работ необходимо правильно подобрать оборудование и его характеристики. Параметрами выбора являются производительность, степень автоматизации и функциональность станка. Также особое внимание уделяется абразивам, с помощью которых происходит снятие слоев материала. Они должны обладать требуемым показателем зернистости и иметь достаточно большую площадь для контакта с заготовкой.

Некоторые модели шлифовальных станков по металлу рассчитаны для выполнения нескольких типов обработки. Но при этом они характеризуются высокой стоимостью и сложностью эксплуатации.

Круглошлифовальные станки

Эти станки предназначены для выполнения продольного и врезного шлифования металлических заготовок различной формы. Характеризуются высокой точностью выполнения операции. Для повышения этого показателя рекомендуется выбрать модели с электронным блоком управления.

Конструктивно оборудование состоит из двух рабочих столов. На основном (горизонтальном) деталь фиксируется в центрах (патроне) для дальнейшего вращения. Вертикальный стол содержит шпиндельную бабку с установленным абразивным кругом. Ее управление может осуществляться вручную или с помощью блока ЧПУ.

Этапы работы внутришлифовального станка.

  1. Закрепление детали в центрах.
  2. Настройка первоначального положения абразива относительно заготовки.
  3. Запуск вращения детали с поступательным движением по горизонтальной оси.
  4. Обработка поверхности и дальнейшее смещение абразива на глубину удаленного слоя материала.

В зависимости от характеристик оборудования на нем можно выполнять черновое или чистовое шлифование. Во втором случае оптимальным вариантом будет применение моделей с системой автоматических подач. При этом определяющим параметром будет скорость вращения абразивного круга.

Определяющими параметрами станка являются ограничения по размеру и массе заготовки. Благодаря широкому диапазону настойки на оборудовании этого класса можно выполнять все типы шлифования.

Изменение расположения абразивного круга зависит от модели станка. В некоторых из них он может смещаться не только в вертикальной плоскости, но и в горизонтальной. Это значительно расширяет диапазон применения.

Внутришлифовальное оборудование

Они предназначены для обработки внутренней части заготовок со сквозными или глухими отверстиями. Главным отличием от вышеописанных моделей является неподвижность заготовки относительно абразива. Данный шлифовальный станок по металлу применяется для обработки цилиндров двигателя и аналогичных им конструкций.

Обработка происходит за счет подвижного шпинделя, на котором установлен диск. Он передает абразиву не только вращательное, но и поступательное движение. Благодаря этому происходит шлифование внутренних граней заготовки.

В зависимости от конструкции и требуемой сложности шлифования, оборудование этого типа условно разделяется на следующие группы:

  • с одним шпинделем. С их помощью выполняют обработку конических и цилиндрических изделий правильной формы. При этом отверстие не обязательно должно быть глухим;
  • дополнительная обработка кромок. Эта функция дает возможность одновременно с внутренним шлифованием делать торцевое. Для этого в оборудовании должен присутствовать дополнительный шпиндель;
  • двухсторонние. Данный тип оборудования предназначен для выполнения двустороннего шлифования сквозных отверстий в деталях.

Внутришлифовальные станки применяются для шлифования массивных изделий. Благодаря своей конструкции и широкому функционалу они могут выполнять все типы обработки, включая окончательную доводку внутренней поверхности.

Особыми техническими характеристиками являются максимальная длина обработки, ограничения по наружному диаметру заготовки и значения максимального и минимального угла поворота абразива в конусных изделиях.

Одной из проблем эксплуатации внутришлифовальных станков является своевременное удаление отходов из области работы абразива. Для этого используются магнитные устройства и специальные фильтры. Без них невозможно будет добиться нужного показателя шероховатости.

Хонингование

Окончательный этап шлифования лучше всего делать на специальном хонинговальном оборудовании. Его конструкция во многом схожа с внутришлифовальными моделями. Разница заключается в том, что заготовка не крепится на специальном устройстве. Также шпиндель имеет большую длину для более тщательного шлифования.

Для полноценного выполнения своих функций на шпиндель могут устанавливаться насадки с различной конфигурацией и размером абразивного зерна. Обработка заготовки выполняется вручную или с помощью автоматизированной системы. В первом случае шпиндель может смещаться относительно своей оси. Автоматический режим предусматривает механизмы для максимально чистовой обработки поверхности заготовки.

Для выбора оптимальной модели необходимо учитывать следующие нюансы конструкции:

  • параметры шпинделя – его длина и количество степеней свободы;
  • возможность выполнять шлифование в горизонтальной и вертикальной плоскости;
  • количество шпинделей. Это влияет не только на качество, но и на скорость шлифования.

В качестве обрабатывающего инструмента используется болванка, устанавливаемая на шпиндель. В ее конструкции предусмотрены разъемы для крепления абразивных брусков различной конфигурации.

Для достижения оптимального результата в процессе хонингования в зону обработки подается жидкость. Она выполняет несколько функций: предотвращает нагрев поверхности и удаляет абразивные частицы, отколовшиеся от брусков.

Бесцентрово-шлифовальные модели

Принцип работы этих станков основан на передачи крутящего момента от ведущего круга заготовке. Она не крепится жестко в центрах. Степень прижима к рабочему абразиву контролируется с помощью регулировки положения ведущего круга.

Чаще всего в качестве материала обработки используют абразивную ленту. Она устанавливается на поверхность рабочего круга. Такой принцип работы позволяет оперативно осуществить перенастройку оборудования для активации другого режима.

Преимущества использования бесцентрово-шлифовальных агрегатов:

  • высокая скорость обработки. По сравнению с вышеописанными моделями она увеличивается в 1,5-2 раза. Это дает возможность шлифовать тонкостенные изделия из мягких сортов металлов;
  • для массивных заготовок можно применять метод фиксации на жестких опорах. При этом привод шпинделя имеет консольную конструкцию, а его вращение осуществляется за счет воздействия магнитного патрона. Таким образом снижается вероятность появления биений. Также практически отсутствует нагрузка на стенки заготовки, что является основной причиной ее частичной деформации по краям, которая характерна при использовании классических шпинделей;
  • возможность использования осевых опор. Они удерживают конструкцию по оси ее вращения. Так можно выполнять шлифование по всей внешней поверхности.

Подобное оборудование оснащается автоматизированным комплексом управления функциями. Это вынужденная мера, так как добиться хорошего результата чистового шлифования с помощью ручных механизмов для данного метода практически невозможно.