14 скалярное произведение векторов. Скалярное произведение векторов

Определение 1

Скалярное произведение векторов называют число, равное произведению дин этих векторов на косинус угла между ними.

Обозначение произведения векторов a → и b → имеет вид a → , b → . Преобразуем в формулу:

a → , b → = a → · b → · cos a → , b → ^ . a → и b → обозначают длины векторов, a → , b → ^ - обозначение угла между заданными векторами. Если хоть один вектор нулевой, то есть имеет значение 0, то и результат будет равен нулю, a → , b → = 0

При умножении вектора самого на себя, получим квадрат его дины:

a → , b → = a → · b → · cos a → , a → ^ = a → 2 · cos 0 = a → 2

Определение 2

Скалярное умножение вектора самого на себя называют скалярным квадратом.

Вычисляется по формуле:

a → , b → = a → · b → · cos a → , b → ^ .

Запись a → , b → = a → · b → · cos a → , b → ^ = a → · n p a → b → = b → · n p b → a → показывает, что n p b → a → - это числовая проекция a → на b → , n p a → a → - проекция b → на a → соостветсвенно.

Сформулируем определение произведения для двух векторов:

Скалярное произведение двух векторов a → на b → называют произведение длины вектора a → на проекцию b → на направление a → или произведение длины b → на проекцию a → соответственно.

Скалярное произведение в координатах

Вычисление скалярного произведения можно производить через координаты векторов в заданной плоскости или в пространстве.

Скаларное произведение двух векторов на плоскости, в трехмерном простарнстве называют сумму координат заданных векторов a → и b → .

При вычислении на плоскости скаларного произведения заданных векторов a → = (a x , a y) , b → = (b x , b y) в декартовой системе используют:

a → , b → = a x · b x + a y · b y ,

для трехмерного пространства применимо выражение:

a → , b → = a x · b x + a y · b y + a z · b z .

Фактически это является третьим определением скалярного произведения.

Докажем это.

Доказательство 1

Для доказательства используем a → , b → = a → · b → · cos a → , b → ^ = a x · b x + a y · b y для векторов a → = (a x , a y) , b → = (b x , b y) на декартовой системе.

Следует отложить векторы

O A → = a → = a x , a y и O B → = b → = b x , b y .

Тогда длина вектора A B → будет равна A B → = O B → - O A → = b → - a → = (b x - a x , b y - a y) .

Рассмотрим треугольник O A B .

A B 2 = O A 2 + O B 2 - 2 · O A · O B · cos (∠ A O B) верно, исходя из теоремы косинусов.

По условию видно, что O A = a → , O B = b → , A B = b → - a → , ∠ A O B = a → , b → ^ , значит, формулу нахождения угла между векторами запишем иначе

b → - a → 2 = a → 2 + b → 2 - 2 · a → · b → · cos (a → , b → ^) .

Тогда из первого определения следует, что b → - a → 2 = a → 2 + b → 2 - 2 · (a → , b →) , значит (a → , b →) = 1 2 · (a → 2 + b → 2 - b → - a → 2) .

Применив формулу вычисления длины векторов, получим:
a → , b → = 1 2 · ((a 2 x + a y 2) 2 + (b 2 x + b y 2) 2 - ((b x - a x) 2 + (b y - a y) 2) 2) = = 1 2 · (a 2 x + a 2 y + b 2 x + b 2 y - (b x - a x) 2 - (b y - a y) 2) = = a x · b x + a y · b y

Докажем равенства:

(a → , b →) = a → · b → · cos (a → , b → ^) = = a x · b x + a y · b y + a z · b z

– соответственно для векторов трехмерного пространства.

Скалярное произведение векторов с координатами говорит о том, что скалярный квадрат вектора равен сумме квадратов его координат в пространстве и на плоскости соответственно. a → = (a x , a y , a z) , b → = (b x , b y , b z) и (a → , a →) = a x 2 + a y 2 .

Скалярное произведение и его свойства

Существуют свойства скалярного произведения, которые применимы для a → , b → и c → :

  1. коммутативность (a → , b →) = (b → , a →) ;
  2. дистрибутивность (a → + b → , c →) = (a → , c →) + (b → , c →) , (a → + b → , c →) = (a → , b →) + (a → , c →) ;
  3. сочетательное свойство (λ · a → , b →) = λ · (a → , b →) , (a → , λ · b →) = λ · (a → , b →) , λ - любое число;
  4. скалярный квадрат всегда больше нуля (a → , a →) ≥ 0 , где (a → , a →) = 0 в том случае, когда a → нулевой.
Пример 1

Свойства объяснимы благодаря определению скалярного произведения на плоскости и свойствам при сложении и умножении действительных чисел.

Доказать свойство коммутативности (a → , b →) = (b → , a →) . Из определения имеем, что (a → , b →) = a y · b y + a y · b y и (b → , a →) = b x · a x + b y · a y .

По свойству коммутативности равенства a x · b x = b x · a x и a y · b y = b y · a y верны, значит a x · b x + a y · b y = b x · a x + b y · a y .

Отсюда следует, что (a → , b →) = (b → , a →) . Что и требовалось доказать.

Дистрибутивность справедлива для любых чисел:

(a (1) → + a (2) → + . . . + a (n) → , b →) = (a (1) → , b →) + (a (2) → , b →) + . . . + (a (n) → , b →)

и (a → , b (1) → + b (2) → + . . . + b (n) →) = (a → , b (1) →) + (a → , b (2) →) + . . . + (a → , b → (n)) ,

отсюда имеем

(a (1) → + a (2) → + . . . + a (n) → , b (1) → + b (2) → + . . . + b (m) →) = = (a (1) → , b (1) →) + (a (1) → , b (2) →) + . . . + (a (1) → , b (m) →) + + (a (2) → , b (1) →) + (a (2) → , b (2) →) + . . . + (a (2) → , b (m) →) + . . . + + (a (n) → , b (1) →) + (a (n) → , b (2) →) + . . . + (a (n) → , b (m) →)

Скалярное произведение с примерами и решениями

Любая задача такого плана решается с применением свойств и формул, касающихся скалярного произведения:

  1. (a → , b →) = a → · b → · cos (a → , b → ^) ;
  2. (a → , b →) = a → · n p a → b → = b → · n p b → a → ;
  3. (a → , b →) = a x · b x + a y · b y или (a → , b →) = a x · b x + a y · b y + a z · b z ;
  4. (a → , a →) = a → 2 .

Рассмотрим некоторые примеры решения.

Пример 2

Длина a → равна 3, длина b → равна 7. Найти скалярное произведение, если угол имеет 60 градусов.

Решение

По условию имеем все данные, поэтому вычисляем по формуле:

(a → , b →) = a → · b → · cos (a → , b → ^) = 3 · 7 · cos 60 ° = 3 · 7 · 1 2 = 21 2

Ответ: (a → , b →) = 21 2 .

Пример 3

Заданны векторы a → = (1 , - 1 , 2 - 3) , b → = (0 , 2 , 2 + 3) . Чему равно скалярной произведение.

Решение

В данном примере рассматривается формула вычисления по координатам, так как они заданы в условии задачи:

(a → , b →) = a x · b x + a y · b y + a z · b z = = 1 · 0 + (- 1) · 2 + (2 + 3) · (2 + 3) = = 0 - 2 + (2 - 9) = - 9

Ответ: (a → , b →) = - 9

Пример 4

Найти скалярное произведение A B → и A C → . На координатной плоскости заданы точки A (1 , - 3) , B (5 , 4) , C (1 , 1) .

Решение

Для начала вычисляются координаты векторов, так как по условию даны координаты точек:

A B → = (5 - 1 , 4 - (- 3)) = (4 , 7) A C → = (1 - 1 , 1 - (- 3)) = (0 , 4)

Подставив в формулу с использованием координат, получим:

(A B → , A C →) = 4 · 0 + 7 · 4 = 0 + 28 = 28 .

Ответ: (A B → , A C →) = 28 .

Пример 5

Заданы векторы a → = 7 · m → + 3 · n → и b → = 5 · m → + 8 · n → , найти их произведение. m → равен 3 и n → равен 2 единицам, они перпендикулярные.

Решение

(a → , b →) = (7 · m → + 3 · n → , 5 · m → + 8 · n →) . Применив свойство дистрибутивности, получим:

(7 · m → + 3 · n → , 5 · m → + 8 · n →) = = (7 · m → , 5 · m →) + (7 · m → , 8 · n →) + (3 · n → , 5 · m →) + (3 · n → , 8 · n →)

Выносим коэффициент за знак произведения и получим:

(7 · m → , 5 · m →) + (7 · m → , 8 · n →) + (3 · n → , 5 · m →) + (3 · n → , 8 · n →) = = 7 · 5 · (m → , m →) + 7 · 8 · (m → , n →) + 3 · 5 · (n → , m →) + 3 · 8 · (n → , n →) = = 35 · (m → , m →) + 56 · (m → , n →) + 15 · (n → , m →) + 24 · (n → , n →)

По свойству коммутативности преобразуем:

35 · (m → , m →) + 56 · (m → , n →) + 15 · (n → , m →) + 24 · (n → , n →) = = 35 · (m → , m →) + 56 · (m → , n →) + 15 · (m → , n →) + 24 · (n → , n →) = = 35 · (m → , m →) + 71 · (m → , n →) + 24 · (n → , n →)

В итоге получим:

(a → , b →) = 35 · (m → , m →) + 71 · (m → , n →) + 24 · (n → , n →) .

Теперь применим формулу для скалярного произведения с заданным по условию углом:

(a → , b →) = 35 · (m → , m →) + 71 · (m → , n →) + 24 · (n → , n →) = = 35 · m → 2 + 71 · m → · n → · cos (m → , n → ^) + 24 · n → 2 = = 35 · 3 2 + 71 · 3 · 2 · cos π 2 + 24 · 2 2 = 411 .

Ответ: (a → , b →) = 411

Если имеется числовая проекция.

Пример 6

Найти скалярное произведение a → и b → . Вектор a → имеет координаты a → = (9 , 3 , - 3) , проекция b → с координатами (- 3 , - 1 , 1) .

Решение

По условию векторы a → и проекция b → противоположно направленные, потому что a → = - 1 3 · n p a → b → → , значит проекция b → соответствует длине n p a → b → → , при чем со знаком «-»:

n p a → b → → = - n p a → b → → = - (- 3) 2 + (- 1) 2 + 1 2 = - 11 ,

Подставив в формулу, получим выражение:

(a → , b →) = a → · n p a → b → → = 9 2 + 3 2 + (- 3) 2 · (- 11) = - 33 .

Ответ: (a → , b →) = - 33 .

Задачи при известном скалярном произведении, где необходимо отыскать длину вектора или числовую проекцию.

Пример 7

Какое значение должна принять λ при заданном скалярном произведении a → = (1 , 0 , λ + 1) и b → = (λ , 1 , λ) будет равным -1.

Решение

Из формулы видно, что необходимо найти сумму произведений координат:

(a → , b →) = 1 · λ + 0 · 1 + (λ + 1) · λ = λ 2 + 2 · λ .

В дано имеем (a → , b →) = - 1 .

Чтобы найти λ , вычисляем уравнение:

λ 2 + 2 · λ = - 1 , отсюда λ = - 1 .

Ответ: λ = - 1 .

Физический смысл скалярного произведения

Механика рассматривает приложение скалярного произведения.

При работе А с постоянной силой F → перемещаемое тело из точки M в N можно найти произведение длин векторов F → и M N → с косинусом угла между ними, значит работа равна произведению векторов силы и перемещения:

A = (F → , M N →) .

Пример 8

Перемещение материальной точки на 3 метра под действием силы равной 5 ньтонов направлено под углом 45 градусов относительно оси. Найти A .

Решение

Так как работа – это произведение вектора силы на перемещение, значит, исходя из условия F → = 5 , S → = 3 , (F → , S → ^) = 45 ° , получим A = (F → , S →) = F → · S → · cos (F → , S → ^) = 5 · 3 · cos (45 °) = 15 2 2 .

Ответ: A = 15 2 2 .

Пример 9

Материальная точка, перемещаясь из M (2 , - 1 , - 3) в N (5 , 3 λ - 2 , 4) под силой F → = (3 , 1 , 2) , совершила работа равную 13 Дж. Вычислить длину перемещения.

Решение

При заданных координатах вектора M N → имеем M N → = (5 - 2 , 3 λ - 2 - (- 1) , 4 - (- 3)) = (3 , 3 λ - 1 , 7) .

По формуле нахождения работы с векторами F → = (3 , 1 , 2) и M N → = (3 , 3 λ - 1 , 7) получим A = (F ⇒ , M N →) = 3 · 3 + 1 · (3 λ - 1) + 2 · 7 = 22 + 3 λ .

По условию дано, что A = 13 Д ж, значит 22 + 3 λ = 13 . Отсюда следует λ = - 3 , значит и M N → = (3 , 3 λ - 1 , 7) = (3 , - 10 , 7) .

Чтобы найти длину перемещения M N → , применим формулу и подставим значения:

M N → = 3 2 + (- 10) 2 + 7 2 = 158 .

Ответ: 158 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Угол между векторами

Рассмотрим два данных вектора $\overrightarrow{a}$ и $\overrightarrow{b}$. Отложим от произвольно выбранной точки $O$ векторы $\overrightarrow{a}=\overrightarrow{OA}$ и $\overrightarrow{b}=\overrightarrow{OB}$, тогда угол $AOB$ называется углом между векторами $\overrightarrow{a}$ и $\overrightarrow{b}$ (рис. 1).

Рисунок 1.

Отметим здесь, что если векторы $\overrightarrow{a}$ и $\overrightarrow{b}$ сонаправлены или один из них является нулевым вектором, тогда угол между векторами равен $0^0$.

Обозначение: $\widehat{\overrightarrow{a},\overrightarrow{b}}$

Понятие скалярного произведения векторов

Математически это определение можно записать следующим образом:

Скалярное произведение может равняться нулю в двух случаях:

    Если один из векторов будет нулевым вектором (Так как тогда его длина равна нулю).

    Если векторы будут взаимно перпендикулярны (то есть $cos{90}^0=0$).

Отметим также, что скалярное произведение больше нуля, если угол между этими векторами острый (так как ${cos \left(\widehat{\overrightarrow{a},\overrightarrow{b}}\right)\ } >0$), и меньше нуля, если угол между этими векторами тупой (так как ${cos \left(\widehat{\overrightarrow{a},\overrightarrow{b}}\right)\ }

С понятием скалярного произведения связано понятие скалярного квадрата.

Определение 2

Скалярным квадратом вектора $\overrightarrow{a}$ называется скалярное произведение этого вектора самого на себя.

Получаем, что скалярный квадрат равен

\[\overrightarrow{a}\overrightarrow{a}=\left|\overrightarrow{a}\right|\left|\overrightarrow{a}\right|{cos 0^0\ }=\left|\overrightarrow{a}\right|\left|\overrightarrow{a}\right|={\left|\overrightarrow{a}\right|}^2\]

Вычисление скалярного произведения по координатам векторов

Помимо стандартного способа нахождения значения скалярного произведения, который вытекает из определения, существует еще один способ.

Рассмотрим его.

Пусть векторы $\overrightarrow{a}$ и $\overrightarrow{b}$ имеют координаты $\left(a_1,b_1\right)$ и $\left(a_2,b_2\right)$, соответственно.

Теорема 1

Скалярное произведение векторов $\overrightarrow{a}$ и $\overrightarrow{b}$ равно сумме произведений соответствующих координат.

Математически это можно записать следующим образом

\[\overrightarrow{a}\overrightarrow{b}=a_1a_2+b_1b_2\]

Доказательство.

Теорема доказана.

Эта теорема имеет несколько следствий:

Следствие 1: Векторы $\overrightarrow{a}$ и $\overrightarrow{b}$ перпендикулярны тогда и только тогда, когда $a_1a_2+b_1b_2=0$

Следствие 2: Косинус угла между векторами равен $cos\alpha =\frac{a_1a_2+b_1b_2}{\sqrt{a^2_1+b^2_1}\cdot \sqrt{a^2_2+b^2_2}}$

Свойства скалярного произведения векторов

Для любых трех векторов и действительного числа $k$ справедливо:

    ${\overrightarrow{a}}^2\ge 0$

    Данное свойство следует из определения скалярного квадрата (определение 2).

    Переместительный закон: $\overrightarrow{a}\overrightarrow{b}=\overrightarrow{b}\overrightarrow{a}$.

    Данное свойство следует из определения скалярного произведения (определение 1).

    Распределительный закон:

    $\left(\overrightarrow{a}+\overrightarrow{b}\right)\overrightarrow{c}=\overrightarrow{a}\overrightarrow{c}+\overrightarrow{b}\overrightarrow{c}$. \end{enumerate}

    По теореме 1, имеем:

    \[\left(\overrightarrow{a}+\overrightarrow{b}\right)\overrightarrow{c}=\left(a_1+a_2\right)a_3+\left(b_1+b_2\right)b_3=a_1a_3+a_2a_3+b_1b_3+b_2b_3==\overrightarrow{a}\overrightarrow{c}+\overrightarrow{b}\overrightarrow{c}\]

    Сочетательный закон: $\left(k\overrightarrow{a}\right)\overrightarrow{b}=k(\overrightarrow{a}\overrightarrow{b})$. \end{enumerate}

    По теореме 1, имеем:

    \[\left(k\overrightarrow{a}\right)\overrightarrow{b}=ka_1a_2+kb_1b_2=k\left(a_1a_2+b_1b_2\right)=k(\overrightarrow{a}\overrightarrow{b})\]

Пример задачи на вычисление скалярного произведения векторов

Пример 1

Найти скалярное произведение векторов $\overrightarrow{a}$ и $\overrightarrow{b}$, если $\left|\overrightarrow{a}\right|=3$ и $\left|\overrightarrow{b}\right|=2$, а угол между ними равен ${{30}^0,\ 45}^0,\ {90}^0,\ {135}^0$.

Решение.

Используя определение 1, получаем

Для ${30}^0:$

\[\overrightarrow{a}\overrightarrow{b}=6{cos \left({30}^0\right)\ }=6\cdot \frac{\sqrt{3}}{2}=3\sqrt{3}\]

Для ${45}^0:$

\[\overrightarrow{a}\overrightarrow{b}=6{cos \left({45}^0\right)\ }=6\cdot \frac{\sqrt{2}}{2}=3\sqrt{2}\]

Для ${90}^0:$

\[\overrightarrow{a}\overrightarrow{b}=6{cos \left({90}^0\right)\ }=6\cdot 0=0\]

Для ${135}^0:$

\[\overrightarrow{a}\overrightarrow{b}=6{cos \left({135}^0\right)\ }=6\cdot \left(-\frac{\sqrt{2}}{2}\right)=-3\sqrt{2}\]

Таким образом, длина вектора рассчитывается, как корень квадратный из суммы квадратов его координат
. Аналогично рассчитывается длинаn-мерного вектора
. Если вспомнить, что каждая координата вектора – это разность между координатами конца и начала, то мы получим формулу длины отрезка, т.е. евклидова расстояния между точками.

Скалярное произведение двух векторов на плоскости – это произведение длин этих векторов на косинус угла между ними:
. Можно доказать, что скалярное произведение двух векторов= (х 1 , х 2) и= (y 1 , y 2) равно сумме произведений соответствующих координат этих векторов:
= х 1 * y 1 + х 2 * y 2 .

В n-мерном пространстве скалярное произведение векторовX= (х 1 , х 2 ,...,х n) иY= (y 1 , y 2 ,...,y n) определяется, как сумма произведений их соответствующих координат:X*Y= х 1 * y 1 + х 2 * y 2 + ... + х n * y n .

Операция умножения векторов друг на другу аналогична умножению матрицы-строки на матрицу-столбец. Подчеркнем, что в результате будет получено число, а не вектор.

Скалярное произведение векторов обладает следующими свойствами (аксиомы):

1) Коммутативное свойство: X*Y=Y*X.

2) Дистрибутивное относительно сложения свойство: X(Y+Z) =X*Y+X*Z.

3) Для любого действительного числа
.

4)
, еслиX– не нулевой вектор;
еслиX– нулевой вектор.

Линейное векторное пространство, в котором задано скалярное произведение векторов, удовлетворяющее четырем соответствующим аксиомам, называется евклидовым линейным векторным пространством .

Легко заметить, что при умножении любого вектора самого на себя мы получим квадрат его длины . Поэтому по-другомудлину вектора можно определить, как корень квадратный из его скалярного квадрата:.

Длина вектора обладает следующими свойствами:

1) |X| = 0Х = 0;

2) |X| = ||*|X|, где– действительное число;

3) |X*Y||X|*|Y| (неравенство Коши-Буняковского );

4) |X+Y||X|+|Y| (неравенство треугольника ).

Угол между векторами вn-мерном пространстве определяется, исходя из понятия скалярного произведения. В самом деле, если
, то
. Эта дробь не больше единицы (согласно неравенству Коши-Буняковского), поэтому отсюда можно найти.

Два вектора называют ортогональными илиперпендикулярными , если их скалярное произведение равно нулю. Из определения скалярного произведения следует, что нулевой вектор ортогонален любому вектору. Если оба ортогональных вектора ненулевые, то обязательноcos= 0, т.е=/2 = 90 о.

Рассмотрим еще раз рисунок 7.4. Из рисунка видно, что косинус угла наклона вектора к горизонтальной оси можно рассчитать как
, а косинус угланаклона вектора к вертикальной оси как
. Эти числа принято называтьнаправляющими косинусами . Легко убедиться, что сумма квадратов направляющих косинусов всегда равна единице:cos 2 +cos 2 = 1. Аналогично можно ввести понятия направляющих косинусов и для пространств большей размерности.

Базис векторного пространства

Для векторов можно определить понятия линейной комбинации ,линейной зависимости инезависимости аналогично тому, как эти понятия были введены для строк матрицы. Также справедливо, что если векторы линейно зависимы, то по крайней мере один из них можно линейно выразить через остальные (т.е. он является их линейной комбинацией). Верно и обратное утверждение: если один из векторов является линейной комбинацией остальных, то все эти векторы в совокупности линейно зависимы.

Отметим, что если среди векторов a l , a 2 ,...a m есть нулевой вектор, то эта совокупность векторов обязательно линейно зависима. В самом деле, мы получим l a l + 2 a 2 +...+ m a m = 0, если, например, приравняем коэффициент j при нулевом векторе к единице, а все остальные коэффициенты – к нулю. При этом не все коэффициенты будут равны нулю ( j ≠ 0).

Кроме того, если какая-то часть векторов из совокупности векторов линейно зависимы, то и все эти вектора - линейно зависимы. В самом деле, если какие-то вектора дают нулевой вектор в своей линейной комбинации с коэффициентами, которые не являются одновременно нулевыми, то к этой сумме произведений можно добавить остальные вектора, умноженные на нулевые коэффициенты, и она по-прежнему будет нулевым вектором.

Как определить, являются ли вектора линейно зависимыми?

Например, возьмем три вектора: а 1 = (1, 0, 1, 5), а 2 = (2, 1, 3, -2) и а 3 = (3, 1, 4, 3). Составим из них матрицу, в которой они будут являться столбцами:

Тогда вопрос о линейной зависимости сведется к определению ранга этой матрицы. Если он окажется равным трем, то все три столбца – линейно независимы, а если окажется меньше, то это будет говорить о линейной зависимости векторов.

Так как ранг равен 2, вектора линейно зависимы.

Отметим, что решение задачи можно было бы начать и с рассуждений, которые основаны на определении линейной независимости. А именно, составить векторное уравнение  l a l + 2 a 2 + 3 a 3 = 0, которое примет вид l *(1, 0, 1, 5) + 2 *(2, 1, 3, -2) + 3 *(3, 1, 4, 3) = (0, 0, 0, 0). Тогда мы получим систему уравнений:

Решение этой системы методом Гаусса сведется к получению той же самой ступенчатой матрицы, только в ней будет еще один столбец – свободных членов. Они все будут равны нулю, так как линейные преобразования нулей не могут привести к другому результату. Преобразованная система уравнений примет вид:

Решением этой системы будет (-с;-с; с), где с – произвольное число; например, (-1;-1;1). Это означает, что если взять  l = -1; 2 =-1 и 3 = 1, то l a l + 2 a 2 + 3 a 3 = 0, т.е. вектора на самом деле линейно зависимы.

Из решенного примера становится ясно, что если взять число векторов больше, чем размерность пространства, то они обязательно будут линейно зависимы. В самом деле, если бы в этом примере мы взяли пять векторов, то получили бы матрицу 4 х 5, ранг которой не мог бы оказаться больше четырех. Т.е. максимальное число линейно независимых столбцов все равно не было бы больше четырех. Два, три или четыре четырехмерных вектора могут оказаться линейно независимыми, а пять и больше – не могут. Следовательно, на плоскости могут оказаться линейно независимыми не более двух векторов. Любые три вектора в двумерном пространстве – линейно зависимы. В трехмерном пространстве любые четыре (или более) вектора – всегда линейно зависимы. И т.п.

Поэтому размерность пространства можно определить, как максимальное число линейно независимых векторов, которые могут в нем быть.

Совокупность n линейно независимых векторов n-мерного пространства R называют базисом этого пространства.

Теорема. Каждый вектор линейного пространства можно представить в виде линейной комбинации векторов базиса, и притом единственным способом.

Доказательство. Пусть векторы e l , e 2 ,...e n образуют базисn-мерного пространства R. Докажем, что любой вектор Х является линейной комбинацией этих векторов. Поскольку вместе с вектором Х число векторов станет (n +1), эти (n +1) векторов будут линейно зависимы, т.е. существуют числа l , 2 ,..., n ,, не равные одновременно нулю, такие что

 l e l + 2 e 2 +...+ n e n +Х = 0

При этом 0, т.к. в противном случае мы получили бы l e l + 2 e 2 +...+ n e n = 0, где не все коэффициенты l , 2 ,..., n равны нулю. Это означает, что векторы базиса оказались бы линейно зависимы. Следовательно, можно разделить обе части первого уравнения на:

( l /)e l + ( 2 /)e 2 +...+ ( n /)e n + Х = 0

Х = -( l /)e l - ( 2 /)e 2 -...- ( n /)e n

Х = x l e l +x 2 e 2 +...+x n e n ,

где х j = -( j /),
.

Теперь докажем, что такое представление в виде линейной комбинации является единственным. Предположим противное, т.е. что существует другое представление:

Х = y l e l +y 2 e 2 +...+y n e n

Вычтем из него почленно полученное ранее выражение:

0 = (y l – х 1)e l + (y 2 – х 2)e 2 +...+ (y n – х n)e n

Так как векторы базиса линейно независимы, получим, что (y j - х j) = 0,
, т.е.y j = х j . Итак, выражение оказалось тем же самым. Теорема доказана.

Выражение Х = x l e l +x 2 e 2 +...+x n e n называютразложением вектора Х по базису e l , e 2 ,...e n , а числа х l , х 2 ,...х n -координатами вектора х относительно этого базиса, или в этом базисе.

Можно доказать, что если nненулевых векторовn-мерного евклидова пространства попарно ортогональны, то они образуют базис. В самом деле, умножим обе части равенства l e l + 2 e 2 +...+ n e n = 0 на любой вектор е i . Получим  l (e l *е i) +  2 (e 2 *е i) +...+  n (e n *е i) = 0   i (e i *е i) = 0   i = 0 для  i.

Векторы e l , e 2 ,...e n n-мерного евклидова пространства образуютортонормированный базис , если эти векторы попарно ортогональны и норма каждого из них равна единице, т.е. если е i *e j = 0 приi≠jи |е i | = 1 дляi.

Теорема (без доказательства). Во всяком n-мерном евклидовом пространстве существует ортонормированный базис.

Примером ортонормированного базиса являют система n единичных векторов е i , у которыхi-я компонента равна единице, а остальные компоненты равны нулю. Каждый такой вектор называетсяорт . Например, вектора-орты (1, 0, 0), (0, 1, 0) и (0, 0, 1) образуют базис трехмерного пространства.

Скалярное произведение векторов (далее в тексте СП). Дорогие друзья! В состав экзамена по математике входит группа задач на решение векторов. Некоторые задачи мы уже рассмотрели. Можете посмотреть их в категории «Векторы». В целом, теория векторов несложная, главное последовательно её изучить. Вычисления и действия с векторами в школьном курсе математики просты, формулы не сложные. Загляните в . В этой статье мы разберём задачи на СП векторов (входят в ЕГЭ). Теперь «погружение» в теорию:

Ч тобы найти координаты вектора, нужно из координат его конца вычесть соответствующие координаты его начала

И ещё:


*Длина вектора (модуль) определяется следующим образом:

Данные формулы необходимо запомнить!!!

Покажем угол между векторами:

Понятно, что он может изменяться в пределах от 0 до 180 0 (или в радианах от 0 до Пи).

Можем сделать некоторые выводы о знаке скалярного произведения. Длины векторов имеют положительное значение, это очевидно. Значит знак скалярного произведения зависит от значения косинуса угла между векторами.

Возможны случаи:

1. Если угол между векторами острый (от 0 0 до 90 0), то косинус угла будет иметь положительное значение.

2. Если угол между векторами тупой (от 90 0 до 180 0), то косинус угла будет иметь отрицательное значение.

*При нуле градусов, то есть когда векторы имеют одинаковое направление, косинус равен единице и соответственно результат будет положительным.

При 180 о, то есть когда векторы имеют противоположные направления, косинус равен минус единице, и соответственно результат будет отрицательным.

Теперь ВАЖНЫЙ МОМЕНТ!

При 90 о, то есть когда векторы перпендикулярны друг другу, косинус равен нулю, а значит и СП равно нулю. Этот факт (следствие, вывод) используется при решение многих задач, где речь идёт о взаимном расположении векторов, в том числе и в задачах входящих в открытый банк заданий по математике.

Сформулируем утверждение: скалярное произведение равно нулю тогда и только тогда, когда данные векторы лежат на перпендикулярных прямых.

Итак, формулы СП векторов:

Если известны координаты векторов или координаты точек их начал и концов, то всегда сможем найти угол между векторами:

Рассмотрим задачи:

27724 Найдите скалярное произведение векторов a и b .

Скалярное произведение векторов мы можем найти по одной из двух формул:

Угол между векторами неизвестен, но мы без труда можем найти координаты векторов и далее воспользоваться первой формулой. Так как начала обоих векторов совпадают с началом координат, то координаты данных векторов равны координатам их концов, то есть

Как найти координаты вектора изложено в .

Вычисляем:

Ответ: 40


Найдём координаты векторов и воспользуемся формулой:

Чтобы найти координаты вектора необходимо из координат конца вектора вычесть соответствующие координаты его начала, значит

Вычисляем скалярное произведение:

Ответ: 40

Найдите угол между векторами a и b . Ответ дайте в градусах.

Пусть координаты векторов имеют вид:

Для нахождения угла между векторами используем формулу скалярного произведения векторов:

Косинус угла между векторами:

Следовательно:

Координаты данных векторов равны:

Подставим их в формулу:

Угол между векторами равен 45 градусам.

Ответ: 45

1. Определение и простейшие свойства. Возьмем ненулевые векторы а и b и отложим их от произвольной точки О: ОА = а и ОВ = b. Величина угла АОВ называется углом между векторами а и b и обозначается (a,b). Если же хотя бы один из двух векторов – нулевой, то угол между ними по определению считается прямым. Заметим, что по определению угол между векторами не меньше 0 и не больше . При этом угол между двумя ненулевыми векторами равен 0 тогда и только тогда, когда эти векторы сонаправлены и равен тогда и только тогда, когда они противоположно направлены.

Проверим, что угол между векторами не зависит от выбора точки О. Это очевидно, если векторы коллинеарны. В противном случае отложим от произвольной точки О 1 векторы О 1 А 1 = а и О 1 В 1 = b и заметим, что треугольники АОВ и А 1 О 1 В 1 равны по трем сторонам, ибо |ОА| = |О 1 А 1 | = |а|, |ОВ| = |О 1 В 1 | = |b|, |АВ| = |А 1 В 1 | = |b–а|. Поэтому углы АОВ и А 1 О 1 В 1 равны.

Теперь мы можем дать основное в этом параграфе

(5.1) Определение. Скалярным произведением двух векторов а и b (обозначается ab) называется число 6 , равное произведению длин этих векторов на косинус угла между векторами. Короче:

ab = |a||b|cos (a,b).

Операция нахождения скалярного произведения называется скалярным умножением векторов. Скалярное произведение аа вектора на себя называется скалярным квадратом этого вектора и обозначается а 2 .

(5.2) Скалярный квадрат вектора равен квадрату его длины.

Если |а| 0, то (a,a) = 0, откуда а 2 = |а||а|cos0 = |a| 2 . Если же а = 0, то а 2 = |а| 2 = 0.

(5.3) Неравенство Коши. Модуль скалярного произведения двух векторов не превосходит произведения модулей сомножителей: |ab| |a||b|. При этом равенство достигается тогда и только тогда, когда векторы а и b коллинеарны.

По определению |ab| = ||a||b|cos (a,b)| = |a||b||cos (a,b)| |a||b. Этим доказано само неравенство Коши. Теперь заметим. что для ненулевых векторов а и b равенство в нем достигается тогда и только тогда, когда |cos (a,b)| = 1, т.е. при (a,b) = 0 или (a,b) = . Последнее равносильно тому, что векторы а и b сонаправлены или противоположно направлены, т.е. коллинеарны. Если же хотя бы один из векторов а и b – нулевой, то они коллинеарны и |ab| = |a||b| = 0.

2. Основные свойства скалярного умножения. К ним относят следующие:

(СУ1) ab = ba (коммутативность);

(СУ2) (ха)b = х(ab) (ассоциативность);

(СУ3) а(b+c) = ab + ac (дистрибутивность).

Коммутативность здесь очевидна, ибо ab = bа. Ассоциативность при х = 0 также очевидна. Если х > 0, то

(ха)b = |ха||b|cos (хa,b) = |х||а||b|cos (хa,b) = х|а||b|cos (a,b) = х(ab),

ибо (хa,b) = (a,b) (из сонаправленности векторов ха и а – рис.21). Если же х < 0, то

(ха)b = |х||а||b|cos (хa,b) = –х|а||b|(–cos (a,b)) = х|а||b|cos (a,b) = х(ab),

ибо (хa,b) = (a,b) (из противоположной направленности векторов ха и а – рис.22). Таким образом, ассоциативность тоже доказана.

Доказать дистрибутивность сложнее. Для этого нам потребуется такая

(5.4) Лемма. Пусть а – ненулевой вектор, параллельный прямой l, а b – произвольный вектор. Тогда ортогональная проекция b " вектора b на прямую l равна
.

Если b = 0, то b " = 0 и ab = 0, так что в этом случае лемма верна. В дальнейшем будем считать, что вектор b" ненулевой. В этом случае от произвольной точки О прямой l отложим векторы ОА = а и ОВ = b, а также опустим перпендикуляр BB" из точки В на прямую l. По определению O B" = b " и (a,b) = АОВ. Обозначим АОВ через и докажем лемму отдельно для каждого из следующих трех случаев:

1) < /2. Тогда векторы а и сонаправлены (рис.23) и

b " = =
=
.

2) > /2 . Тогда векторы а и b " противоположно направлены (рис.24) и

b " = =
= .

3) = /2. Тогда b " = 0 и ab = 0, откуда b " =
= 0.

Теперь докажем дистрибутивность (СУ3). Она очевидна, если вектор а – нулевой. Пусть а 0. Тогда проведем прямую l || а, и обозначим через b " и c " ортогональные проекции на нее векторов b и с, а через d " – ортогональную проекцию на нее вектора d = b+c. По теореме 3.5 d " = b "+ c ". Применяя к последнему равенству лемму 5.4, получаем равенство
=
. Скалярно умножив его на а, находим, что
2 =
, откуда ad = ab+ac, что и требовалось доказать.

Доказанные нами свойства скалярного умножения векторов аналогичны соответствующим свойствам умножения чисел. Но не все свойства умножения чисел переносятся на скалярное умножение векторов. Вот типичные примеры:

1

) Если ab = 0, то это не означает, что а = 0 или b = 0. Пример: два ненулевых вектора, образующие прямой угол.

2) Если ab = ac, то это не означает, что b = с, даже если вектор а – ненулевой. Пример: b и с – два различных вектора одинаковой длины, образующие с вектором а равные углы (рис. 25).

3) Неверно, что всегда а(bc) = (ab)c: хотя бы потому, что справедливость такого равенства при bc, ab 0 влечет коллинеарность векторов а и с.

3. Ортогональность векторов. Два вектора называются ортогональными, если угол между ними – прямой. Ортогональность векторов обозначается значком .

Когда мы определяли угол между векторами, то договорились считать угол между нулевым вектором и любым другим вектором прямым. Поэтому нулевой вектор ортогонален любому. Это соглашение позволяет доказать такой

(5.5) Признак ортогональности двух векторов. Два вектора ортогональны тогда и только тогда, когда их скалярное произведение равно 0.

Пусть а и b – произвольные векторы. Если хотя бы один из них – нулевой, то они ортогональны, а их скалярное произведение равно 0. Таким образом, в этом случае теорема верна. Допустим теперь, что оба данных вектора – ненулевые. По определению ab = |a||b|cos (a,b). Поскольку по нашему предположению числа |a| и |b| не равны 0, то ab = 0 cos (a,b) = 0 (a,b) = /2, что и требовалось доказать.

Равенство ab = 0 часто принимают за определение ортогональности векторов.

(5.6) Следствие. Если вектор а ортогонален каждому из векторов а 1 , …, а п , то он ортогонален и любой их линейной комбинации.

Достаточно заметить, что из равенства аа 1 = … = аа п = 0 следует равенство а(х 1 а 1 + … +х п а п ) = х 1 (аа 1 ) + … + х п (аа п ) = 0.

Из следствия 5.6 легко выводится школьный признак перпендикулярности прямой и плоскости. В самом деле, пусть некоторая прямая MN перпендикулярна двум пересекающимся прямым АВ и АС. Тогда вектор MN ортогонален векторам АВ и АС. Возьмем в плоскости АВС любую прямую DE. Вектор DE компланарен неколлинеарным векторам АВ и АС, и потому раскладывается по ним. Но тогда он тоже ортогонален вектору MN, то есть прямые MN и DE перпендикулярны. Получается, что прямая MN перпендикулярна любой прямой из плоскости АВС, что и требовалось доказать.

4. Ортонормированные базисы. (5.7) Определение. Базис векторного пространства называется ортонормированным, если, во-первых, все его векторы имеют единичную длину и, во-вторых, любые два его вектора ортогональны.

Векторы ортонормированного базиса в трехмерном пространстве обычно обозначают буквами i, j и k, а на векторной плоскости – буквами i и j. Учитывая признак ортогональности двух векторов и равенство скалярного квадрата вектора квадрату его длины, условия ортонормированности базиса (i,j,k) пространства V 3 можно записать так:

(5.8) i 2 = j 2 = k 2 = 1 , ij = ik = jk = 0,

а базиса (i,j) векторной плоскости – так:

(5.9) i 2 = j 2 = 1 , ij = 0.

Пусть векторы а и b имеют в ортонормированном базисе (i,j,k) пространства V 3 координаты (а 1 , а 2 , а 3 ) и (b 1 b 2 , b 3 ) соответственно. Тогда ab = (а 1 i+ а 2 j+ а 3 k)(b 1 i+b 2 j+b 3 k) = a 1 b 1 i 2 +a 2 b 2 j 2 +a 3 b 3 k 2 +a 1 b 2 ij+a 1 b 3 ik+a 2 b 1 ji+a 2 b 3 jk+a 3 b 1 ki+a 3 b 2 kj = a 1 b 1 + a 2 b 2 + a 3 b 3 . Так получается формула для скалярного произведения векторов а(а 1 2 3 ) и b(b 1 ,b 2 ,b 3 ), заданных своими координатами в ортонормированном базисе пространства V 3 :

(5.10) ab = a 1 b 1 + a 2 b 2 + a 3 b 3 .

Для векторов а(а 1 2 ) и b(b 1 , b 2 ), заданных своими координатами в ортонормированном базисе на векторной плоскости, она имеет вид

(5.11) ab = a 1 b 1 + a 2 b 2 .

Подставим в формулу (5.10) b = a. Получится, что в ортонормированном базисе а 2 = а 1 2 + а 2 2 + а 3 2 . Поскольку а 2 = |а| 2 , получается такая формула для нахождения длины вектора а(а 1 2 3 ), заданного своими координатами в ортонормированном базисе пространства V 3 :

(5.12) |а| =
.

На векторной плоскости она в силу (5.11) приобретает вид

(5.13) |а| =
.

Подставляя в формулу (5.10) b = i, b = j, b = k, получаем еще три полезных равенства:

(5.14) ai = a 1 , aj = а 2 , ak = а 3 .

Простота координатных формул для нахождения скалярного произведения векторов и длины вектора составляет главное преимущество ортонормированных базисов. Для неортонормированных базисов эти формулы, вообще говоря, неверны, и их применение в этом случае является грубой ошибкой.

5. Направляющие косинусы. Возьмем в ортонормированном базисе (i,j,k) пространства V 3 вектор а(а 1 2 3 ). Тогда ai = |a||i|cos (a,i) = |a|cos (a,i). С другой стороны, ai = a 1 по формуле 5.14. Получается, что

(5.15) а 1 = |a|cos (a,i).

и, аналогично,

а 2 = |a|cos (a,j), а 3 = |a|cos (a,k).

Если вектор а – единичный, эти три равенства приобретают особенно простой вид:

(5.16) а 1 = cos (a,i), а 2 = cos (a,j), а 3 = cos (a,k).

Косинусы углов, образованных вектором с векторами ортонормированного базиса, называются направляющими косинусами этого вектора в данном базисе. Как показывают формулы 5.16, координаты единичного вектора в ортонормированном базисе равны его направляющим косинусам.

Из 5.15 вытекает, что а 1 2 + а 2 2 + а 3 2 = |а| 2 (cos 2 (a,i)+cos 2 (a,j) +cos 2 (a,k)). С другой стороны, а 1 2 + а 2 2 + а 3 2 = |а| 2 . Получается, что

(5.17) сумма квадратов направляющих косинусов ненулевого вектора равна 1.

Этот факт бывает полезен для решения некоторых задач.

(5.18) Задача. Диагональ прямоугольного параллелепипеда образует с двумя его ребрами, выходящими из той же вершины, углы по 60 . Какой угол она образует с третьим выходящим из этой вершины ребром?

Рассмотрим ортонормированный базис пространства V 3 , векторы которого изображены ребрами параллелепипеда, выходящим из данной вершины. Поскольку вектор диагонали образует с двумя векторами этого базиса углы по 60 , квадраты двух из трех его направляющих косинусов равны cos 2 60 = 1/4. Поэтому квадрат третьего косинуса равен 1/2, а сам этот косинус равен 1/
. Значит, искомый угол равен 45
.