Параболическое зеркало. Механические оправы и держатели для внеосевых зеркал

Всем привет! С Вами Виталий Соловей. Сегодня моя статья будет на тему параболических зеркал и вообще энергии солнца. Пару лет назад на просторах интернета США я наткнулся на уникальное по тем временам устройство — параболическое зеркало, которое так же ещё называют концентратором прямых солнечных лучей. Визуально оно напоминает спутниковую тарелку с зеркальной поверхностью внутри.

Принцип действия данной тарелки таков, что при попадании солнечных лучей на зеркальную поверхность, лучи отражаются и скапливаются в одной точке. Это происходит благодаря параболической форме тарелки и луч света отражается точно под таким же углом, под которым попал на зеркальную поверхность.

При правильном исполнении, так называемого, выпуклого зеркала, температура в месте скопления лучей может достигать 2 000 градусов по товарищу Цельсию.

В подтверждение этого приведу видеоролик

Поверхность параболического зеркала может быть либо цельная, то есть без швов, либо из кусочков зеркал или отражающей плёнки. На видео выше, зеркало состояло из 5800 отдельных маленьких зеркал. Но сложность состоит в том, чтобы правильно их все разместить. Разместить все 5800 мини зеркал под правильным углом.

Так же поверхность может быть покрыта кусочками отражающей серебряной плёнки, что тоже не есть гуд, так как из-за многочисленных швов, солнечные лучи слегка рассеиваются и эффект будет значительно слабее.

Вы ходом в данной ситуации может быть, если саму выпуклую тарелку изготовить из нескольких продольных частей, на которые ровно наклеена отражающая плёнка.

В таком случае отражённые лучи под наиболее правильным углом будут фокусироваться в точке скопления. Но самым эффективным способом изготовления всё таки является натуральное стеклянное зеркало параболической формы, которое, конечно стоить будет немерено для применения зеркала в быту.

Простейший и наиболее эффективный вариант, который я нашёл — это метод вакуумной формовки параболического зеркала.


Во время приклеивания, плёнку лучше расстелить зеркальной стороной к столешнице, а оклееной посудиной накрыть её и немного прижать.

  • Теперь чтобы сформировать параболическую форму для плёнки, потребуется откачать воздух из получившегося сосуда. Для этого просверлим отверстие в любой части пластиковой посудины и вставим туда велосипедный золотник.

Важно! Золотник требуется установить обратной стороной наизнанку, так как мы будем выкачивать воздух, а не накачивать его внутрь посудины.


И вот, что должно получиться в идеале:

На этом пока всё, в последующих статьях ещё расскажу о других, не менее важных применениях параболического зеркала. А напоследок видео о том, как развести огонь с помощью туалетной бумаги и столовой ложки:

    параболическое зеркало - paraboliškasis veidrodis statusas T sritis radioelektronika atitikmenys: angl. parabolic mirror vok. Parabolspiegel, m rus. параболическое зеркало, n pranc. miroir parabolique, m … Radioelektronikos terminų žodynas

    параболическое зеркало - parabolinis veidrodis statusas T sritis fizika atitikmenys: angl. parabolic mirror vok. Parabolspiegel, m rus. параболическое зеркало, n pranc. miroir parabolique, m … Fizikos terminų žodynas

    параболическое зеркало с центральным расположением облучателя - Осесимметричное параболическое зеркало, в котором облучатель расположен в его фокусе F. При такой конструкции происходит частичное затенение зеркала антенны, облучающей системой и ее опорами, расположенными в главном луче антенны (рис. С 4). Ср.… …

    параболическое зеркало со смещенным облучателем - Неосесимметричное параболическое зеркало (сегмент параболы) с облучателем, вынесенным за пределы главного направления излучения (рис. O 2). При такой конструкции исключается затенение поверхности зеркала антенны и снижается уровень излучения по… … Справочник технического переводчика

    параболическое зеркало (солнечной установки) - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN dish … Справочник технического переводчика

    многосекционное зеркало - Разборное зеркало (обычно параболическое), состоящее из большого числа секций. Используется для создания больших антенн, развертываемых в космосе (рис. М 5). [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь… … Справочник технического переводчика

    Устройство для излучения и приёма радиоволн. Передающая А. преобразует энергию электромагнитных колебаний высокой частоты, сосредоточенную в выходных колебательных цепях радиопередатчика, в энергию излучаемых радиоволн. Преобразование… …

    Археологи нашли многочисленные свидетельства того, что в доисторические времена люди проявляли большой интерес к небу. Наиболее впечатляют мегалитические сооружения, построенные в Европе и на других континентах несколько тысяч лет назад.… … Энциклопедия Кольера

    В данной таблице представлены основные астрономические инструменты, которые используются в отечественных исследованиях. Аббревиатура Полное название Производитель Оптическая система Диаметр апертуры (мм) Фокусное расстояние (мм) Обсерватории в … Википедия

    - (от лат. reflecto обращаю назад, отражаю) телескоп, снабженный зеркальным Объективом. Р. используются преимущественно для фотографирования неба, фотоэлектрических и спектральных исследований, реже для визуальных наблюдений. В… … Большая советская энциклопедия

(PDF, 396 KB)

Из всех типов асферических отражателей наиболее часто в оптических приборах используются именно параболические зеркала. Они лишены сферических аберраций, поэтому фокусируют параллельный пучок лучей в одной точке или проецируют точечный источник в бесконечность.
Многие оптические системы не требуют использования осесимметричной апертуры. Более того, для некоторых устройств категорически недопустимо затенение траектории лучей центральной частью зеркала. Использование в таких системах внеосевых зеркал вместо осесимметричных обладает несомненными преимуществами.

Внеосевые параболические зеркала в основном применимы в следующих устройствах:

  • системы моделирования объекта;
  • коллиматоры;
  • системы измерения и другие оптические контрольные приборы;
  • спектроскопические системы и системы с нарушенным полным внутренним отражением (НПВО, МНПВО);
  • радиометры;
  • расширители луча;
  • системы измерения расхождения лазерных лучей.

Основные преимущества внеосевых параболических зеркал


Использование приборов с внеосевой оптикой позволяет добиться следующих преимуществ:
  • сократить размеры системы;
  • сократить массу системы;
  • использовать зеркала как клиновидной, так и равнотолщинной конфигурации;
  • сократить стоимость системы.
Таким образом, возрастает эффективность и конкурентоспособность приборов.

Основные параметры внеосевого параболического зеркала


В настоящий момент не существует единой системы обозначений для специфицирования внеосевых параболических зеркал. Различные производители используют различную терминологию для описания одних и тех же параметров изделия. Для вашего удобства мы приводим схематический эскиз внеосевой параболы с используемыми нами условными обозначениями.


Рис. 1. Схема внеосевого параболического зеркала.

Пояснения

Истинное фокусное расстояние (PFL) - это фокусное расстояние истинной параболы. Форма поверхности параболы определяется как Z=R^2/4*PFL, где R - это радиальное расстояние от вершины параболы, а Z - сагиттальное отклонение поверхности.

Наклонное фокусное расстояние (SFL) - это расстояние между геометрическим центром внеосевого параболического зеркала и фокусом параболы. Эта величина рассчитывается на основании значения истинного фокусного расстояния и, наоборот, PFL можно рассчитать, исходя из значения SFL

Оптическая ось внеосевого параболического зеркала - это линия, параллельная оптической оси истинной параболы и проходящая через геометрический центр оптической поверхности внеосевого параболического зеркала

Зональный радиус (ZR)
- это расстояние между оптической осью истинной параболы и оптической осью внеосевого параболического зеркала.

Внеосевое расстояние (OAD) - это расстояние между оптической осью истинной параболы и внутренним краем внеосевого параболического зеркала. Эта величина рассчитывается, исходя из значения зонального радиуса, и, наоборот, - значение ZR можно рассчитать, исходя из величины OAD.

К внеосевой параболе может быть прикреплено юстировочное плоское зеркало. Оно крепится перпендикулярно к оптической оси истинной параболы и, соответственно, оптической оси внеосевого параболического зеркала. Его наличие упрощает процедуру юстировки внеосевого параболического зеркала в составе оптической системы.

Cпецификация внеосевого параболического зеркала включает 5 основных параметров:

  • PFL (или SFL) - истинное (или наклонное) фокусное расстояние;
  • ZR (или OAD) - зональный радиус (или внеосевое расстояние);
  • CA - световой диаметр;
  • SA - точность поверхности зеркала;
  • SQ - класс чистоты поверхности.
Вспомогательные параметры:
  • предпочтительные диаметр и толщина - по умолчанию мы принимаем диаметр и толщину = 1/8 диаметра;
  • предпочтительный материал - по умолчанию мы предлагаем оптическое стекло
  • ЛК-7 (российский аналог Pyrex);
  • тип покрытия - по умолчанию предлагается алюминий с защитой.
Основные характеристики производимых нами внеосевых параболических зеркал:
  • стандартный материал - ЛК-7 (аналог Pyrex); по запросу могут быть использованы другие материалы, например, Supermax33 (SHOTT), астроситалл (аналог Zerodur), кварцевое стекло или стекло К8 (аналог BК7);
  • стандартная точность обработки поверхности составляет: полный размах ошибки (PV) - λ/8 на 633 нм, среднеквадратическое отклонение (RMS) - λ/40. Поверхности с большей точностью производятся по запросу;
  • стандартное покрытие: защищенный Al; прочие виды металлических покрытий: серебро или золото, а также диэлектрические покрытия наносятся по запросу;
  • внеосевой угол составляет до 45 градусов. Типичная величина - 5-30 градусов;
  • фокусное расстояние - от 150 мм до 12 метров. Типичная величина - 0,5-2 метров;
  • световой диаметр - до 640 мм. Типичная величина - 100-400 мм.
Все эти параметры взаимозависимы. Так, большее фокусное расстояние позволяет достичь более высокой точности поверхности зеркала SA, а больший зональный радиус ZR, наоборот, приводит к более низкой точности поверхности SA.

Документация


К каждому изделию прилагается сертификат, в котором указаны результаты тестирования точности поверхности зеркала SA, чистоты поверхности SQ, данные измерений фокусного расстояния (истинного PFL и наклонного SFL) и внеосевого параметра (зонального радиуса ZR, либо внеосевого расстояния OAD - по желанию заказчика), а также геометрические размеры.
К сертификату прилагаются: интерферограмма поверхности, вычисленный профиль ошибок поверхности, а также спектр отражения покрытия. Ниже приводятся типичная интерферограмма поверхности, профиль ошибок поверхности и спектр покрытия (Al+SiO) для зеркала со световым диаметром 8’’ (204 мм), зональным радиусом 7’’ (179,6 мм) и фокусным расстоянием 40’’ (1016 мм).

Рис. 2. Типичная интерферограмма внеосевого параболического зеркала.


Рис. 3. Реконструкция профиля ошибок поверхности.

Анализ волнового фронта

Единицы измерения деформации: микроны
Длина волны, микроны: 0.633
Опорная поверхность: сфера
Неучитываемые аберрации:
Форма зонального распределения: Полиномы Цернике

Параметры регулярных ошибок

D = -0.000 Lx = 0.000 Ly = -0.000 C = 0.000 RMS(W) = 0.009
A = 0.013 FIA = 41.300 PV = 0.025 RMS(W-A) = 0.007 FA = 0.361
B0 = 0.007 PV = 0.011 RMS(W-Z) = 0.008 FZ = 0.137
B2 = -0.043
B4 = 0.043
C = 0.020 FIC = 5.327 PV = 0.013 RMS(W-C) = 0.008 FC = 0.074

Местные ошибки

PV = 0.037 RMS(M) = 0.006
Характеристики волнового фронта
RMS MIN MAX PV STRL STRH
0.009 -0.023 0.032 0.055 0.998 0.999

Где: D, Lx, Ly и C - стрелка, наклоны по осям и смещение опорной поверхности;
A, FIA - величина и угол разворота астигматизма;
C, FIC - величина и угол разворота комы;
RMS(W) - среднеквадратическое отклонение волнового фронта;
RMS(W-A), RMS(W-C) - среднеквадратические отклонения волнового фронта за вычетом,
соответственно, астигматизма и комы;
FA и FC - статистические оценки вклада, соответственно, астигматизма и комы в общую ошибку волнового фронта;
B0, B2, B4 - коэффициенты зональной ошибки (осесимметричных полиномов Цернике);
STRL, STRH - нижняя и верхняя границы числа Штреля;
PV - размах ошибки волнового фронта.


Рис. 4. Типичный спектр отражения для покрытия с защищенным алюминием (Al + SiO).

Краткое описание и основные преимущества наших технологий

На производстве применяется технология, разработанная в целях поставки больших объемов недорогих внеосевых параболических зеркал и последующего их использования для нужд оборонной промышленности. Традиционно внеосевые параболические зеркала изготавливаются с помощью полировки и разрезания больших осесимметричных параболических зеркал. Этот метод требует необоснованных затрат, особенно, если нужно изготовить всего 1-2 зеркала. Кроме того, в этом случае устанавливаются жесткие ограничения на сочетание фокуса, диаметра и внеосевого расстояния. Другой традиционный способ изготовления - алмазное точение. Его основными недостатками являются ограниченный набор материалов подложки (обрабатываются только металлы), а также низкие класс чистоты и точность поверхности.

Вместо вышеупомянутых методов производства внеосевых параболических зеркал в нашем случае внедрена модернизированная, управляемая компьютером технология полировки и локального ретуширования ошибок поверхности. Она сочетает преимущества обычной полировки (гладкая поверхность и возможность использования обычного стекла в качестве материала подложки) и алмазного точения (возможность производить зеркала без полировки полной параболы). Обработка оптической поверхности проходит в несколько этапов (итераций). После каждой итерации производится интерферометрическое измерение формы поверхности, что обеспечивает точное определение характера и расположения имеющихся ошибок поверхности внеосевого параболического зеркала. Затем информация из интерферометра поступает в компьютеризированное устройство управления полировочной машиной. Оно рассчитывает оптимальные траекторию и скорость вращения/перемещения компактной полирующей головки для ретуширования отдельных участков поверхности. Обычно выполняется около 10 циклов интерферометрических измерений с последующим ретушированием. Безусловно, сложные зеркала требуют значительно большего числа циклов.

Благодаря уникальной технологии производства, наша фирма может предложить вам точные оптические компоненты по вполне конкурентным ценам.

Механические оправы и держатели для внеосевых зеркал

В комплекте к зеркалам предлагается ряд высокоточных держателей и оправ, которые позволяют надежно и точно размещать оптику в рабочей схеме или приборе. Все держатели доступны как в механической, так и в моторизированной версиях. В зависимости от требований заказчика могут быть предложены более точные подвижки и винты, стопорные механизмы. По запросу проводится сборка и юстировка зеркала в оправе, контроль точности поверхности без оправы и в ней. В зависимости от размера оптического элемента предлагаются различные типы держателей. Каждый тип оправ и держателей также доступен в вакуум-совместимом исполнении.



Для зеркал диаметром от 50 до 152 мм
предлагаются оправы с подвижками в горизонтальной и вертикальной плоскостях.


Держатели выполнены из стали или алюминиевых сплавов, имеют несколько отверстий М6 для крепления на оптическом столе. Тефлоновые вставки и фиксирующий винт предотвращают повреждение оптики при монтаже и использовании.


Удобно расположенные ручки винтов позволяют поворачивать зеркало в вертикальной и горизонтальной плоскостях. Диапазон поворота ±1,5°, чувствительность 0,5 угловых секунд. Рельсовая система крепления надежно удерживает оптический элемент, а также дает возможность регулировать высоту оптической оси.

Для оптики размером от 250 мм до 500 мм предлагается модификация держателя, позволяющая закреплять зеркала весом до 30кг.


Диапазон вертикального вращения ±1,52°, горизонтального - ±1,55°. Чувствительность подвижек 1,5 угловых секунд.

Для крупногабаритных зеркал диаметром свыше 500 мм
разработан специальный поворотный держатель.


При отпущенных стопорных винтах оправа имеет возможность поворота зеркала на 360 градусов как вокруг горизонтальной, так и вокруг вертикальной оси. Поворотный столик имеет точную шкалу, что значительно упрощает грубое позиционирование. Для более тонкой настройки предусмотрены высокоточные винты с диапазоном вращения ± 4 ° и разрешением до 3 угловых секунд в обеих плоскостях. Система крепления обеспечивает разгрузку зеркала и не вносит искажения в отраженный волновой фронт. Также данная оправа может быть использована для крупногабаритной астрооптики и оптики высокомощных лазеров диаметром до 1000 мм.

В случае необходимости, предлагаемые позиционеры и оправы могут быть модифицированы согласно Вашим требованиям.

Для получения котировки заполните, пожалуйста, форму запроса с указанием интересующих Вас элементов.

В идеале зеркало должно иметь параболическую форму, но если отступления сферы от параболоида не превышают 1/8 длины волны света, то такая сфера работает точно как параболоид. Параболоид имеет кривизну, меньшую на краях, чем в центре. Это означает, что при испытании теневым прибором, когда "звезда" и нож расположены в центре кривизны, теневая картина для параболоида должна иметь такой же вид, как для зеркала с завалом на краю (см, рис. 29, в). Этот завал -- не любой, а совершенно точно рассчитанный. Разница положений центров кривизны центральной и крайней зон равна

где D -- диаметр зеркала в миллиметрах, а R -- радиус кривизны. Для нашего зеркала эти величины равны 150 мм и 2400 мм соответственно. Продольная аберрация этого параболоида при испытании из центра кривизны равна 2,3 мм. В предфокальном критическом положении ножа на теневой картине виден "бугор" с плоской вершиной -- правую часть занимает на всех зонах тень, а на центральной зоне полутень. По мере передвижения ножа дальше от зеркала становится виден завал, напоминающий бублик. Этот "бублик" лучше всего виден, когда нож находится между двумя критическими положениями, точно посередине. Его "вершина", однако, явно смещена со средних зон ближе к краю зеркала. Расчеты показывают, что при положении ножа точно посередине между критическими положениями "вершина" "бублика" находится на расстоянии 0,7 радиуса заготовки зеркала, в нашем случае для 150-миллиметрового зеркала "вершина" расположена на расстоянии 53 мм от его центра. Наконец, когда нож подойдет к зафокальному критическому положению, вся тень, кроме ободка полутени, на краю зеркала, займет положение на левой стороне зеркала.

Если нам удастся искусственно исказить плоский рельеф так, чтобы он принял форму плавного без "переломов" (резко выраженных зон) "бублика", то это будет означать, что нам удалось из сферы получить параболоид. Еще раз напомним, что не любой завал, а только плавный "бублик" с "вершиной" на расстоянии 0,7 радиуса от центра заготовки зеркала и с заданной продольной аберрацией и есть параболоид.

Рис. 30. Теневые рельефы одного и того же параболического зеркала при различных положениях ножа. Буквенные обозначения те же, что и на рис. 29.

Чтобы получить плавную яму в центре и "опустить" края, надо увеличить кривизну в центре зеркала, чтобы она постепенно уменьшалась при переходе от центра к краю (рис. 30). Для того чтобы получить такую яму, есть несколько способов.



1.Найдем квадратик на полировальнике, центр которого лежит примерно на зоне 0,7r Соскоблим его на толщину 0,5 мм. Каждые 10 минут контролируем зеркало на теневом приборе (рис. 31, а).

2. Расширим канавки на краю, но оставим их нетронутыми в центре до зоны 0,3, как показано на рис. 31, б. Каждые 10 минут контролируем зеркало.

3. Соскоблим тонкий слой (0,5 мм) смолы небольшими участкам в среднем по 1--2 см2 с таким расчетом, чтобы полировальник более всего оказался ослабленным на зоне 0,7. В центральной зоне и на самой крайней зоне оставляем полировальник нетронутым (рис. 31, в). Полируем на подрезанном полировальнике и контролируем зеркало теневым прибором каждые 15 минут.

4. В бумажном круге, наружный диаметр которого на 15--20 мм больше диаметра полировальника, вырежем звезду, как показано на рис. 31, г. Смочим круг водой и наложим на подогретый в воде полировальник. После этого формуем полировальник зеркалом, положив зеркало на смолу, а на зеркало груз. После 3--5 минут такой формовки снимаем груз и в течение 5--10 минут "полируем" без крокуса, не снимая круга. После этого круг снимаем. На поверхности полировальника выдавится звезда. Она и сделает углубление в центре зеркала.

При полировке на подрезанном или отформованном полировальнике возможны зональные ошибки.

Рис. 31. Способы воздействия полировальником на зеркало во время параболизации.

а) Подрезка квадратика на 70%-ной зоне, б) расширение канавок на краю, в) подрезка 70%-ной зоны, г) формовка звезды.

Если это "валик", сполируем его местной ретушью. Если "канава", увеличим подрезку этой зоны.

Исследуя зеркало с помощью тоневого прибора, надо тщательно следить за краем, так как сейчас легко просмотреть непредусмотренный завал края, который выглядит узкой полоской, резко увеличивающей радиус кривизны крайней зоны. Для того чтобы его предупредить, расширим канавки на зоне шириной 3--5 мм на краю полировальника, как это указывалось раньше.

На практике применяют в основном четыре типа парабо­лических зеркал-отражателей (pис. 41).

Первый тип отражателя (рис. 41, а) представляет собой параболический цилиндр, вдоль фокальной линии которого располагаются линейные излучатели. Вследствие этого направленность антенной системы в плоскости фокальной линии (плоскость XOZ) зависит от числа облучающих элемен­тов, как и в плоскостных антеннах.

Направленность же этой антенны в перпендикулярной плоскости YOZ определяется в основном размерами парабо­лического цилиндра, отнесенными к длине волны.

Так, если в качестве облучателя параболического цилиндра применяются полуволновые вибраторы с рефлекто­рами (для устра­нения путаницы рефлектор у облучателя именуют контррефлектором ), (рис. 41, а), то угол раствора диаграммы направлен­ности между точками половинного значения мощности в плоскости YOZ равен 51° , а сама диаграмма направ­ленности выражается кривой а, показанной на рис. 11.

Другой разновидностью являются антенны с рефлекто­рами в виде параболоидов вращения (рис. 41,б). Антенны этого типа применяются в тех случаях, когда необходимо получить «игольчатую» диаграмму направленности, т. е. узкую диаграмму, как в вертикальной, так и горизонтальной плоскостях.

На рис. 41 в, изображена антенна с усеченным парабо­лоидом вращения, а на рис. 41 г - параболоид, ограничен­ный эллипсообразным контуром. Рефлектор последнего типа иногда называют параболоидом типа «лимонная долька» из-за некоторого внешнего сходства с последней.

Антенны, изображенные на рис. 41в и г, применяются для создания веерных и секторных диаграмм направленности с малым углом раствора в одной плоскости и широким в перпендикулярной к ней плоскости.

Для создания веерных диаграмм также применяются сегментно-параболические антенны, одна из разновидностей ко­торых показана на рис. 42. Эта антенна представляет собой параболический цилиндр небольшой высоты, закрытый с торцов металлическими пластинами. Диаграмма направ­ленности у сегментно-параболической антенны в плоскости YOZ подобна таковой у секторного рупора. В плоскости же XOZ она значительно уже, вследствие того, что в раскрыве сегментно-параболической антенны возникает плоская волна (за счет отражения от параболической поверхности), тогда как в раскрыве секторных рупорных антенн фронт волны цилиндрический.

Сегментно-параболические антенны применяются как самостоятельно, так и в качестве облучателей параболоцилиндрических антенн.

В правильно сконструированных сегментно-параболиче­ских антеннах коэффициент использования поверхности 7 несколько больше 0,8.