Математические загадки (материал для урока). Oop - мавен - Два объекта с зависимостями друг от друга

Наиболее трудным и наименее формализованным в задаче автоматической классификации является момент, связанный с определением понятия однородности объектов.

В общем случае понятие однородности объектов определяется заданием правила вычисления величины характеризующей либо расстояние между объектами из исследуемой совокупности либо степень близости (сходства) тех же объектов. Если задана функция , то близкие в смысле этой метрики объекты считаются однородными, принадлежащими к одному классу. Естественно, при этом необходимо сопоставление с некоторым пороговым значением, определяемым в каждом конкретном случае по-своему.

Аналогично используется для формирования однородных классов и упомянутая выше мера близости при задании которой нужно помнить о необходимости соблюдения следующих естественных требований: требования симметрии требования максимального сходства объекта с самим собой и требования при заданной метрике монотонного убывания по , т. е. из должно с необходимостью следовать выполнение неравенства

Конечно, выбор метрики (или меры близости) является узловым моментом исследования, от которого решающим образом зависит окончательный вариант разбиения объектов на классы при заданном алгоритме разбиения. В каждой конкретной задаче этот выбор должен производиться по-своему. При этом решение данного вопроса зависит в основном от главных целей исследования, физической и статистической природы вектора наблюдений X, полноты априорных сведений о характере вероятностного распределения X. Так, например, если из конечных целей исследования и из природы вектора X следует, что понятие однородной группы естественно интерпретировать как генеральную совокупность с одновершинной плотностью (полигоном частот) распределения, и если к тому же известен общий вид этой плотности, то следует воспользоваться общим подходом, описанным в гл. 6. Если, кроме того, известно, что наблюдения извлекаются из нормальных генеральных совокупностей с одной и той же матрицей ковариаций, то естественной мерой отдаленности двух объектов друг от друга является расстояние махаланобисского типа (см. ниже).

В качестве примеров расстояний и мер близости, сравнительно широко используемых в задачах кластер-анализа, приведем здесь следующие.

Общий вид метрики махаланобисского типа. В общем случае зависимых компонент вектора наблюдении X и их различном значимости в решении вопроса об отнесении объекта (наблюдения) к тому или иному классу обычно пользуются обобщенным («взвешенным») расстоянием махаланобисского типа, задаваемым формулой

Здесь - ковариационная матрица генеральной совокупности, из которой извлекаются наблюдения а А - некоторая симметричная неотрицательно-онределенная матрица «весовых» коэффициентов , которая чаще всего выбирается диагональной .

Следующие три вида расстояний, хотя и являются частными случаями метрики все же заслуживают специального описания.

Обычное евклидово расстояние

К ситуациям, в которых использование этого расстояния можно признать оправданным, прежде всего относят следующие:

наблюдения X извлекаются из генеральных совокупностей, описываемых многомерным нормальным законом с ковариационной матрицей вида т. е. компоненты X взаимно независимы и имеют одну и ту же дисперсию;

компоненты вектора наблюдении X однородны по своему физическому смыслу, причем установлено, например с помощью опроса экспертов, что все они одинаково важны с точки зрения решения вопроса об отнесении объекта к тому или иному классу;

признаковое пространство совпадает с геометрическим пространством нашего бытия, что может быть лишь в случаях , и понятие близости объектов соответственно совпадает с понятием геометрической близости в этом пространстве, например классификация попаданий при стрельбе по цели.

«Взвешенное» евклидово расстояние

Обычно применяется в ситуациях, в которых так или иначе удается приписать каждой из компонент вектора наблюдений X некоторый неотрицательный «вес» .

Определение весов связано, как правило, с дополнительным исследованием, например получением и использованием обучающих выборок, организацией опроса экспертов и обработкой их мнений, использованием некоторых специальных моделей. Попытки определения весов только по информации, содержащейся в исходных данных , как правило, не дают желаемого эффекта, а иногда могут лишь отдалить от истинного решения. Достаточно заметить, что в зависимости от весьма тонких и незначительных вариаций физической и статистической природы исходных данных можно привести одинаково убедительные доводы в пользу двух диаметрально противоположных решений этого вопроса - выбирать пропорционально величине среднеквадратической ошибки признака либо пропорционально обратной величине среднеквадратической ошибки этого же признака .

Хеммингово расстояние. Используется как мера различия объектов, задаваемых дихотомическими признаками. Оно задается с помощью формулы

и, следовательно, равно числу несовпадений значений соответствующих признаков в рассматриваемых объектах.

Другие меры близости для дихотомических признаков.

Меры близости объектов, описываемых набором дихотомических признаков, обычно основаны на характеристиках , где - число нулевых (единичных) компонент, совпавших в объектах X, и Так, например, если из каких-либо профессиональных соображений или априорных сведений следует, что все признаков исследуемых объектов можно считать равноправными, а эффект от совпадения или несовпадения нулей такой же, что и от совпадения или несовпадения единиц, то d качестве меры близости объектов используют величину

Весьма полный обзор различных мер близости объектов, описываемых дихотомическими признаками, читатель найдет в .

Меры близости и расстояния, задаваемые с помощью потенциальной функции. Во многих задачах математической статистики, теории вероятностей, физической теории потенциала и теории распознавания образов, или классификации многомерных наблюдений, оказываются полезными некоторые специально устроенные функции от двух векторных переменных X и Y, а чаще всего просто от расстояния между этими переменными, которые будем называть потенциальными.

Так, например, если пространство всех мыслимых значений исследуемого вектора X разбито на полную систему непересекающихся односвязных компактных множеств или однородных классов и потенциальная функция определена для следующим образом:

В противном случае, то с помощью этой функции удобно строить обычные эмпирические гистограммы (оценки плотности распределения по имеющимся наблюдениям Действительно, легко видеть, что

где - число наблюдений, попавших в класс содержащий точку - объем области (геометрическая интерпретация для одномерного случая показана на рис. 5.1).

Если в исследуемом факторном пространстве задана метрика , то можно не связывать себя заранее зафиксированным разбиением на классы, а задавать как монотонно убывающую функцию расстояния .

Например,

Приведем здесь еще лишь одну достаточно общую форму связи между , в которой расстояние выступает как функция некоторых значений потенциальной функции К:

Рис. 5.1, Гистограмма построенная с помощью разбиения на группы выборочной одномерной совокупности

В частности, выбрав в качестве скалярное произведение векторов U и V, т. е. положив

получим по формуле (5.3) обычное евклидово расстояние .

Легко понять, что и в случае задания потенциальной функции в виде соотношений (5.2) формулы (5.1) позволяют строить статистические оценки плотности распределения (5.1), хотя график функции будет уже не ступенчатым, а сглаженным. При отсутствии метрики в пространстве функции могут быть использованы в качестве меры близости объектов и и V, а также объектов и целых классов и классов между собой.

В первом случае эта мера позволяла получить лишь качественный ответ: объекты близки, если U и V принадлежат одному классу, и объекты далеки - в противном случае; в двух других случаях мера близости является количественной характеристикой.

О физически содержательных мерах близости объектов. В некоторых задачах классификации объектов, не обязательно описываемых количественно, естественнее использовать в качестве меры близости объектов (или расстояния между ними) некоторые физически содержательные числовые параметры, так или иначе характеризующие взаимоотношения между объектами. Примером может служить задача классификации с целью агрегирования отраслей народного хозяйства, решаемая на основе матрицы межотраслевого баланса . Таким образом, классифицируемым объектом в данном примере является отрасль народного хозяйства, а матрица межотраслевого баланса представлена элементами где под подразумевается сумма годовых поставок в денежном выражении отрасли в . В качестве матрицы близости в этом случае естественно взять, например, симметризованную нормированную матрицу межотраслевого баланса. При этом под нормировкой понимается преобразование, при котором денежное выражение поставок из отрасли в заменяется долей этих поставок по отношению ко всем поставкам отрасли. Симметризацию же нормированной матрицы межотраслевого баланса можно проводить различными способами. Так, например, в близость между отраслями выражается либо через среднее значение их взаимных нормированных поставок, либо через комбинацию из их взаимных нормированных поставок.

О мерах близости числовых признаков (отдельных факторов). Решение задач классификации многомерных данных, как правило, предусматривает в качестве предварительного этапа исследования реализацию методов, позволяющих существенно сократить размерность исходного факторного пространства, выбрать из компонент наблюдаемых векторов X сравнительно небольшое число наиболее существенных, наиболее информативных. Для этих целей бывает полезно рассмотреть каждую из компонент качестве объекта, подлежащего классификации. Дело в том, что разбиение признаков на небольшое число однородных в некотором смысле групп позволит исследователю сделать вывод, что компоненты, входящие в одну группу, в определенном смысле сильно связаны друг с другом и несут информацию о каком-то одном свойстве исследуемого объекта.

Следовательно, можно надеяться, что не будет большого ущерба в информации, если для дальнейшего исследования оставим лишь по одному представителю от каждой такой группы.

Чаще всего в подобных ситуациях в качестве мер близости между отдельными признаками так же как и между наборами таких признаков, используются различные характеристики степени их коррелированности и в первую очередь коэффициенты корреляции. Проблеме сокращения размерности анализируемого признакового пространства специально посвящен раздел III книги. Более подробно вопросы построения и использования расстояний и мер близости между отдельными объектами рассмотрены в .


Задачи на движение навстречу друг другу (встречное движение) — один из трех основных видов задач на движение.

Если два объекта движутся навстречу друг другу, то они сближаются:

Чтобы найти скорость сближения двух объектов, движущихся навстречу друг другу, надо сложить их скорости:

Скорость сближения больше, чем скорость каждого из них.

Скорость, время и расстояние связаны между собой :

Рассмотрим некоторые задачи на встречное движение.

Задача 1

Два велосипедиста выехали навстречу друг другу. Скорость одного из низ 12 км/ч, а другого — 10 км/ч. Через 3 часа они встретились. Какое расстояние было между ними в начале пути?

Условие задач на движение удобно оформлять в виде таблицы:

1) 12+10=22 (км/ч) скорость сближения велосипедистов

2) 22∙3=66 (км) было между велосипедистами в начале пути.

Ответ: 66 км.

Задача 2

Два поезда идут навстречу друг другу. Скорость одного из них 50 км/ч, скорость другого — 60 км/ч. Сейчас между ними 440 км. Через сколько часов они встретятся?

1) 60+50=110 (км/ч) скорость сближения поездов

2) 440:110=4 (ч) время, через которое поезда встретятся.

Ответ: через 4 ч.

Задача 3.

Два пешехода находились на расстоянии 20 км друг от друга. Они вышли одновременно навстречу друг другу и встретились через 2 часа. Скорость одного пешехода 6 км/ч. Найти скорость другого пешехода.

I пешеход

II пешеход

1) 20:2=10 (км/ч) скорость сближения пешеходов

2) 10-6=4 (км/ч) скорость другого пешехода.

Ответ: 4 км/ч.

Для начала вспомним формулы, которые используют при решении подобных задач: S = υ·t , υ = S: t , t = S: υ
где S – расстояние, υ – скорость движения, t – время движения.

Когда два объекта движутся равномерно с разными скоростями, то расстояние между ними за каждую единицу времени или увеличивается, или уменьшается.

Скорость сближения – это расстояние, на которое сближаются объекты за единицу времени.
Скорость удаления – это расстояние, на которое удаляются объекты за единицу времени.

Движение на сближение встречное движение и движение вдогонку . Движение на удаление можно разделить на два вида: движение в противоположных направлениях и движение с отставанием .

Трудность для некоторых учеников заключается в том, чтобы правильно поставить «+» или «–» между скоростями при нахождении скорости сближения объектов или скорости удаления.

Рассмотрим таблицу.

Из неё видно, что при движении объектов в противоположные стороны их скорости складываются . При движении в одну сторону – вычитаются .

Примеры решения задач.

Задача №1. Две автомашины движутся навстречу друг другу со скоростями 60км/ч и 80 км/ч. Определите скорость сближения машин.
υ 1 = 60 км/ч
υ 2 = 80 км/ч
Найти υ сб
Решение.
υ сб = υ 1 + υ 2 – скорость сближения в разных направлениях )
υ сб = 60 + 80 = 140 (км/ч)
Ответ: скорость сближения 140 км/ч.

Задача №2. Из одного пункта в противоположных направлениях выехали две автомашины со скоростями 60 км/ч и 80 км/ч. Определите скорость удаления машин.
υ 1 = 60 км/ч
υ 2 = 80 км/ч
Найти υ уд
Решение.
υ уд = υ 1 + υ 2 – скорость удаления (знак «+» так как из условия понятно, что машины движутся в разных направлениях )
υ уд = 80 + 60 = 140 (км/ч)
Ответ: скорость удаления 140 км/ч.

Задача №3. Из одного пункта в одном направлении выехали сначала автомобиль со скоростью 60 км/ч, а затем мотоцикл со скоростью 80 км/ч. Определите скорость сближения машин.
(Видим, что здесь случай движения вдогонку, поэтому находим скорость сближения)
υ ав = 60 км/ч
υ мот = 80 км/ч
Найти υ сб
Решение.
υ сб = υ 1 – υ 2 – скорость сближения (знак «–» так как из условия понятно, что машины движутся в одном направлении )
υ сб = 80 – 60 = 20 (км/ч)
Ответ: скорость сближения 20 км/ч.

То есть название скорости – сближения или удаления – не влияют на знак между скоростями. Имеет значение только направление движения .

Рассмотрим другие задачи.

Задача № 4. Из одного пункта в противоположных направлениях вышли два пешехода. Скорость одного из них 5 км/ч, другого – 4 км/ч. Какое расстояние будет между ними через 3 ч?
υ 1 = 5 км/ч
υ 2 = 4 км/ч
t = 3 ч
Найти S
Решение.
в разных направлениях )
υ уд = 5 + 4 = 9 (км/ч)

S = υ уд ·t
S = 9·3 = 27 (км)
Ответ: через 3 ч расстояние будет 27 км.

Задача № 5. Два велосипедиста одновременно выехали навстречу друг другу из двух пунктов, расстояние между которыми 36 км. Скорость первого 10 км/ч, второго 8 км/ч. Через сколько часов они встретятся?
S = 36 км
υ 1 = 10 км/ч
υ 2 = 8 км/ч
Найти t
Решение.
υ сб = υ 1 + υ 2 – скорость сближения (знак «+» так как из условия понятно, что машины движутся в разных направлениях )
υ сб = 10 + 8 = 18 (км/ч)
(время встречи можно рассчитать по формуле)
t = S: υ сб
t = 36: 18 = 2 (ч)
Ответ: встретятся через 2 ч.

Задача №6. Два поезда отошли от одной станции в противоположных направлениях. Их скорости 60 км/ч и 70км/ч. Через сколько часов расстояние между ними будет 260 км?
υ 1 = 60 км/ч
υ 2 = 70 км/ч
S = 260 км
Найти t
Решение .
1 способ
υ уд = υ 1 + υ 2 – скорость удаления (знак «+» так как из условия понятно, что пешеходы движутся в разных направлениях )
υ уд = 60 + 70 = 130 (км/ч)
(Пройденное расстояние находим по формуле)
S = υ уд ·t t = S: υ уд
t = 260: 130 = 2 (ч)
Ответ: через 2 ч расстояние между ними будет 260 км.
2 способ
Сделаем пояснительный рисунок:

Из рисунка видно, что
1) через заданное время расстояние между поездами будет равно сумме расстояний, которые прошли каждый из поездов:
S = S 1 + S 2 ;
2) каждый из поездов ехал одинаковое время (из условия задачи), значит,
S 1 =υ 1 · t —расстояние которое проехал 1 поезд
S 2 =υ 2 · t — расстояние которое проехал 2 поезд
Тогда,
S = S 1 + S 2
= υ 1 · t + υ 2 · t = t · (υ 1 + υ 2) = t · υ уд
t = S: (υ 1 + υ 2) — время за которое оба поезда проедут 260 км
t = 260: (70 + 60) = 2 (ч)
Ответ: расстояние между поездами будет 260 км через 2 ч.

1. Два пешехода одновременно вышли навстречу друг другу из двух пунктов, расстояние между которыми 18 км. Скорость одного из них 5 км/ч, другого – 4 км/ч. Через сколько часов они встретятся? (2 ч)
2. Два поезда отошли от одной станции в противоположных направлениях. Их скорости 10 км/ч и 20 км/ч. Через сколько часов расстояние между ними будет 60 км? (2 ч)
3. Из двух сел, расстояние между которыми 28 км, одновременно навстречу друг другу вышли два пешехода. Скорость первого 4 км/ч, скорость второго 5 км/ч. На сколько километров за час пешеходы сближаются друг с другом? Какое расстояние будет между ними через 3 часа? (9 км, 27 км)
4. Расстояние между двумя городами 900 км. Два поезда вышли из этих городов навстречу друг другу со скоростями 60 км/ч и 80 км/ч. На каком расстоянии друг от друга были поезда за 1 час до встречи? Есть ли в задаче лишнее условие? (140 км, есть)
5. Велосипедист и мотоциклист выехали одновременно из одного пункта в одном направлении. Скорость мотоциклиста 40 км/ч, а велосипедиста 12 км/ч. Какова скорость их удаления друг от друга? Через сколько часов расстояние между ними будет 56 км? (28 км/ч, 2 ч)
6. Из двух пунктов, удаленных друг от друга на 30 км, выехали одновременно в одном направлении два мотоциклиста. Скорость первого 40 км/ч, второго 50 км/ч. Через сколько часов второй догонит первого?
7. Расстояние между городами А и В 720 км. Из А в В вышел скорый поезд со скоростью 80 км/ч. Через 2 часа навстречу ему из В в А вышел пассажирский поезд со скоростью 60 км/ч. Через сколько часов они встретятся?
8. Из села вышел пешеход со скоростью 4 км/ч. Через 3 часа вслед за ним выехал велосипедист со скоростью 10 км/ч. За сколько часов велосипедист догонит пешехода?
9. Расстояние от города до села 45 км. Из села в город вышел пешеход со скоростью 5 км/ч. Через час навстречу ему из города в село выехал велосипедист со скоростью 15 км/ч. Кто из них в момент встречи будет ближе к селу?
10. Старинная задача. Некий юноша пошел из Москвы к Вологде. Он проходил в день 40 верст. Через день вслед за ним был послан другой юноша, проходивший в день 45 верст. Через сколько дней второй догонит первого?
11. Старинная задача . Собака усмотрела в 150 саженях зайца, который пробегает в 2 минуты по 500 сажен, а собака за 5 минут – 1300 сажен. Спрашивается, в какое время собака догонит зайца?
12. Старинная задача . Из Москвы в Тверь вышли одновременно 2 поезда. Первый проходил в час 39 верст и прибыл в Тверь двумя часами раньше второго, который проходил в час 26 верст. Сколько верст от Москвы до Твери?

Движение является темой для самых разнообразных задач, в том числе и для задач на части. Но наряду с этим существует и самостоя­тельный тип задач на движение. Он объединяет такие задачи, которые решаются па основании зависимости между тремя величинами, харак­теризующими движение: скоростью, расстоянием и временем. Во всех случаях речь идет о равномерном прямолинейном движении.

Итак, движение, рассматриваемое в текстовых задачах, характери­зуют три величины: пройденный путь (s ), скорость (v), время (t ); ос­новное отношение (зависимость) между ними: s = v ∙ t.

Рассмотрим особенности решения основных видов задач на дви­жение.

Задачи на встречное движение двух тел

Пусть движение первого тела характеризуется величинами s₁, v₁, t₁ , движение второго - s₂, v₂, t₂ , . Такое движение можно представить на схематическом чертеже (рис. 50):

Если два объекта начинают движение одновременно навстречу друг другу, то каждое из них с момента выхода и до встречи затрачивает одинаковое время, т.е. t₁, = t₂ = t вапр.

Расстояние, на которое сближаются движущиеся объекты за еди­ницу времени, называется скоростью сближения, т.е. vсбл. = v ₁+ v₂.

Все расстояние, пройденное движущимися телами при встречном движении, может быть подсчитано по формуле: s = vсбл.∙ t вапр

Задача 1. Два пешехода одновременно вышли навстречу друг другу из двух пунктов, расстояние между которыми 18 км. Скорость одного из них 5 км/ч, а другого - 4 км/ч. Через сколько часов они встретились?

Решение. В задаче рассматривается движение навстречу друг
другу двух пешеходов. Один идет со скоростью 5 км/ч, а другой -
4 км/ч. Путь, который они должны пройти, 18 км. Требуется найти время, через которое

они встретятся, начав движение одновременно. Вспомогательные модели,
если они нужны, могут быть разными - схематический чертеж
(рис. 51) или таблица.

Поиск плана решения в данном случае удобно вести, рассуждая от данных к вопросу. Так как ско­рости пешеходов известны, можно найти их скорость сближения. Зная скорость сближения пешеходов и все расстояние, которое им надо пройти, можем найти время, через которое пешеходы встретятся. Запишем решение задачи по действиям:

1)5+ 4 = 9 (км/ч)

2) 18:9 = 2(ч) Таким образом, пешеходы встретятся через 2 ч от начала движения.

Задача 2. Два автомобиля выехали одновременно навстречу друг другу из двух пунктов, расстояние между которыми 600 км, и через 5 ч встретились. Один их них ехал быстрее другого на 16 км/ч. Опреде­лите скорости автомобилей.

Решение. В задаче рассматривается движение навстречу друг другу двух автомобилей. Известно, что движение они начали одновременно и встретились через 5 часов. Скорости автомобилей различны один ехал быстрее другого на 16 км/ч. Путь, который проехали автомобили -600 км. Требуется определить скорости движения.



Вспомогательные модели, если они нужны, могут быть различ­ными: схематический чертеж (рис. 52) или таблица.

Поиск плана решения задачи будем вести, рассуждая от дан­ных к вопросу. Так как известно все расстояние и время встречи, можно найти скорость сближе­ния автомобилей. Затем, зная, что скорость одного на 16 км/ч больше скорости другого, можно найти скорости автомобилей. При этом можно воспользоваться вспомогательной моделью.

Запишем решение:

1) 600:5= 120 (км/ч) – скорость сближения автомобилей

2) 120 - 16 = 104 (км/ч) – скорость сближения, если бы скорость автомобилей была одинаковой

3) 104:2 =52 (км/ч) – скорость первого автомобиля.

4) 52 + 16 = 68 (км/ч) – скорость второго автомобиля.

Есть и другие арифметические способы решения данной задачи, вот два из них.

1) 600:5= 120 (км/ч) 1) 16-5 = 80 (км)

2) 120 + 16 = 136 (км/ч) 2) 600 - 80 = 520 (км)

3) 136:2 = 68 (км/ч) 3) 520:2 = 260 (км)

4) 68 -16 = 52 (км/ч) 4) 260:5 = 52 (км/ч)

5)52+ 16 = 68 (км/ч)

Дайте устные пояснения к выполненным действиям и попытайтесь найти другие способы решения данной задачи.

Задачи на движение двух тел в одном направлении

Среди них следует различать два типа задач:

1) движение начинается одновременно из разных пунктов;

2) движение начинается в разное время из одного пункта.

Рассмотрим случай, когда движение двух тел начинается одновре­менно в одном направлении из разных пунктов, лежащих на одной прямой. Пусть движение первого тела характеризуется величинами s₁, v₁, t₁ , движение второго - s₂, v₂, t₂ , .

Такое движение можно представить на схематическом чертеже (рис 54):

Рис. 54

Если при движении в одном направлении первое тело догоняет второе, то v₁ > v₂. Кроме того, за единицу времени первый объект приближается к другому на расстояние

v₁ - v₂.. Это расстояние назы­вают скоростью сближения: vсбл. = v₁ - v₂..

Расстояние s , представляющее длину отрезка АВ, находят по фор­мулам:

s = s₁ - s₂ и s = vсбл. ∙ tвстр.


Задача 3. Из двух пунктов, удаленных друг от друга на 30 км, выехали одновременно в одном направлении два мотоциклиста. Ско­рость одного - 40 км/ч, другого - 50 км/ч. Через сколько часов второй мотоциклист догонит первого?

Решение. В задаче рассматривается движение двух мотоцикли­стов. Выехали они одновременно из разных пунктов, находящихся на расстоянии 30 км. Скорость одного 40 км/ч, другого - 50 км/ч. Требует­ся узнать, через сколько часов второй мотоциклист догонит первого.

Вспомогательные модели, если они нужны, могут быть разными: схематический чертеж или таблица.

Сравнение скоростей мотоцик­листов говорит о том, что в тече­ние часа первый мотоциклист при­ближается ко второму на 10 км Расстояние, которое ему надо пройти до встречи со вторым, на 30 км больше, чем расстояние, ко­торое за такое же время пройдет второй мотоциклист. Поэтому первому потребуется столько времени, сколько раз 10 км укладываются в 30 км. Запишем решение задачи по действиям:

1) 50 - 40 = 10 (км/ч) - скорость сближения мотоциклистов

2) 30:10 = 3 (ч) - за это время первый мотоциклист догонит второго.
Наглядно этот процесс представлен на рисунке 56, где единичный отрезок изображает расстояние, равное 10 км.

Задача 4. Всадник выезжает из пункта А и едет со скоростью 12 км/ч; в это же время из пункта В, отстоящего от А на 24 км, вышел пешеход со скоростью 4 км/ч. Оба движутся в одном направлении На каком расстоянии от В всадник догонит пешехода?

Решение. В задаче рассматривается движение в одном направле­нии всадника и пешехода. Движение началось одновременно из раз­ных пунктов, расстояние между которыми 24 км, и с разной скоро­стью: у всадника - 12 км/ч, у пешехода - 4 км/ч. Требуется узнать рас­стояние от пункта, из которого вышел пешеход, до момента встречи всадника и пешехода.

Вспомогательные модели: схе­матический чертеж (рис. 57) или таблица.

24 км

Чтобы ответить на вопрос зада­чи, надо найти время, которое будет находиться в пути пешеход или всадник, - время их движения до встречи одинаковое. Как найти это время, подробно рассказано в пре­дыдущей задаче. Поэтому, чтобы от­ветить на вопрос задачи, необходи­мо выполнить следующие действия:

1) 12-4 = 8 (км/ч) - скорость сближения всадника и пешехода.

2) 24:8 = 3 (ч) - время, через которое всадник догонит пешехода

3) 4 ∙ 3 - 12 (км) - расстояние от В, на котором всадник догонит пешехода.

Задача 5. В 7 ч из Москвы со скоростью 60 км/ч вышел поезд. В 13 ч следующего дня в том же направлении вылетел самолет со скоро­стью 780 км/ч. Через какое время самолет догонит поезд?

Решение. В данной задаче рассматривается движение поезда и самолета в одном направлении из одного пункта, но начинается оно в разное время. Известны скорости поезда и самолета, а также время начала их движения. Требуется найти время, через которое самолет догонит поезд.

Из условия задачи следует, что к моменту вылета самолета поезд прошел определенное расстояние. И если его найти, то данная задача становится аналогичной задаче 3, рассмотренной выше.

Чтобы найти расстояние, которое прошел поезд до момента выле­та самолета, надо подсчитать, сколько времени находился в пути по­езд. Умножив время на скорость поезда, получим расстояние, прой­денное поездом до момента вылета самолета. А дальше как в задаче 3.

1) 24 - 7 - 17 (ч) - столько времени был в пути поезд в тот день, когда он вышел из Москвы.

2) 17 + 13 = 30 (ч) - столько времени был в пути поезд до момента
вылета самолета.

3) 60 ∙ 30 - 1800 (км) - путь, пройденный поездом до момента вылета самолета.

4) 780 - 60 = 720 (км/ч) - скорость сближения самолета и поезда.

5) 1800:720 = 2-(ч)-время, через которое самолет догонит поезд.

Задачи на движение двух тел в противоположных направлениях

В таких задачах два тела могут начинать движение в противополож­ных направлениях из одной точки: а) одновременно; б) в разное время. А могут начинать свое движение из двух разных точек, находящихся на заданном расстоянии, и в разное время.

Общим теоретическим положением для них будет следующее: vудал. = v₁ + v₂.. соответственно скорости первого и второго тел, а v удал. - это скорость удаления, т.е. расстояние, на которое удаля­ются друг от друга движущиеся тела за единицу времени.

Задача 6. Два поезда отошли одновременно от одной станции в противоположных направлениях. Их скорости 60 км/ч и 70 км/ч. На каком расстоянии друг от друга будут эти поезда через 3 часа после выхода?

Решение. В задаче рассматривается движение двух поездов. Они выходят одновременно от одной станции и идут в противоположных направлениях. Известны скорости поездов (60 км/ч и 70 км/ч) и время их движения (3 ч). Требуется найти расстояние, на котором они будут находиться друг от друга через указанное время.

Вспомогательные модели, если они нужны, могут быть такими: схематический чертеж или таблица.

Чтобы ответить на вопрос за­дачи, достаточно найти расстоя­ния, пройденные первым и вто­рым поездом за 3 ч, и полученные результаты сложить:

1)60 ∙ 3= 180 (км)

2) 70 ∙ 3 = 210 (км)

3) 180 + 210 = 390 (км)
Можно решить эту задачу другим способом, воспользовавшись понятием скорости удаления:

1) 60 + 70 = 130 (км/ч) - скорость удаления поездов

2) 130 ∙3 = 390 (км) - расстояние между поездами через 3 ч.
Задача 7. От станции Л отправился поезд со скоростью 60 км/ч

Через 2 ч с этой же станции в противоположном направлении вышел другой поезд со скоростью 70 км/ч. Какое расстояние будет между поездами через 3 ч после выхода второго поезда?

Решение. Эта задача отличается от задачи 6 тем, что движение поездов начинается в разное время. Вспомогательная модель задачи представлена на рис. 59. Решить ее можно двумя арифметическими способами.

60 км/ч 70 км/ч


Рис, 59

1) 2 + 3 = 5 (ч) - столько времени в пути был первый поезд.

2) 60 5 ∙ 300 (км) - расстояние, которое за 5 ч прошел этот поезд.

3) 70 ∙ 3 - 210 (км) - расстояние, которое прошел второй поезд.

4) 300 + 210 = 510 (км) - расстояние между поездами.

1) 60 + 70 = 130 (км/ч) - скорость удаления поездов.

2) 130 ∙ 3 = 390 (км) расстояние, на которое удалились поезда за 3 ч.

3) 60 ∙ 2 = 120 (км) - расстояние, пройденное первым поездом за 2 ч.

4) 390 + 120 = 510 (км) - расстояние между поездами.

Задачи на движение по реке

При решении таких задач различают: собственную скорость дви­жущегося тела, скорость течения реки, скорость движения тела по течению и скорость движения тела против течения. Зависимость меж­ду ними выражается формулами:

vпо теч. = vсбл. + vтеч.р.;

vпр. теч. = vсбл. – vтеч.р.

vсбл. = (vтеч.р + vпр. теч.) : 2.

Задача 8. Расстояние 360 км катер проходит за 15 ч, если двигает­ся против течения реки, и за 12 ч, если двигается по течению. Сколько времени потребуется катеру, чтобы проплыть 135 км по озеру?

Решение. В данном случае удобно все данные, неизвестные и ис­комое, записать в таблицу.

s v t
по течению 360 км 12 ч
против течения 360 км 15 ч
по реке 135 км ?

Таблица подсказывает последовательность действий: найти сначала скорость движения катера по течению и против течения, затем, исполь­зуя формулы, - собственную скорость катера и, наконец, время, за ко­торое он проплывет 135 км по озеру:

1) 360:12 = 30 (км/ч) - скорость катера по течению реки.

2) 360:15 - 24 (км/ч) - скорость катера против течения реки.

3) 24 + 30 - 54 (км/ч) - удвоенная собственная скорость катера.

4) 54:2 = 27 (км/ч) - собственная скорость катера

5) 135: 27 = 5 (ч) - время, за которое проплывет катер 135 км.

Р е ш е н и е з а д а ч, с в я з а н н ы х с р а з л и ч н ы м и

п р о ц е с с а м и (работа, наполнение бассейнов и др.)

Задача 9. Двум рабочим дано задание изготовить 120 деталей. Один рабочий зготавливает 7 деталей в час, а другой - 5 деталей в час. За сколько часов рабочие выполнят задание, работая вместе?

Решение. В задаче рассматривается процесс выполнения двумя ра­бочими задания по изготовлению 120 деталей. Известно, что одни рабочий делает в час 7 деталей, а другой - 5. Требуется узнать время, за которое рабочие сделают 120 деталей, работая вместе. Чтобы найти ответ на это требование, надо знать, что процесс, о котором идет речь в задаче, характеризуется тремя величинами:

Общим количеством произведенных деталей это результат про­цесса; обозначим его буквой К ;

Количеством изготовленных деталей за единицу времени (это производительность труда или скорость протекания процесса); обо­значим его буквой к;

Временем выполнения задания (это время протекания процесса), обозначим его буквой t .

Зависимость между данными величинами выражается формулой К=кt.

Чтобы найти ответ на вопрос задачи, т.е. время t надо найти коли­чество деталей, изготавливаемых рабочими за 1 ч при совместной ра­боте, а затем разделить 120 деталей на полученную производитель­ность. Таким образом, будем иметь: к = 7 + 5 = 12 (деталей в час):,

T = 120:12= 10 (ч).

Задача 10. В одном резервуаре 380 м 3 воды, а в другом - 1500 м 3. В первый резервуар каждый час поступает 80 м 3 воды, а из второго каждый час выкачивают по 60 м 3 воды. Через сколько часов в резер­вуарах воды станет поровну?

Решение. В данной задаче рассматривается процесс заполнения водой одного резервуара и выкачивания воды из другого. Этот про­цесс характеризуется следующими величинами:

Объемом воды в ре­зервуарах; обозначим его буквой V ;

Скоростью поступления (накачивания) воды; об о з н а ч и м его б у к в о й v ;

Временем протекания процесса; обозначим его буквой t

380 м 3 1500 м 3

Зависимость между названными величинами выражается форму­лой V = v ∙ t

Процесс, описанный в данной задаче, аналогичен движению двух объектов навстречу друг другу. Это можно наглядно представить, по­строив вспомогательную модель (рис. 60).

Чтобы ответить на вопрос задачи, надо найти скорость «сближе­ния» уровней воды в резервуарах и объем воды, при котором проис­ходит выравнивание этих уровней, а затем разделить этот объем на скорость «сближения». Запишем решение задачи по действиям:

1)80 + 60 = 140 (мЗ);

2) 1500 – 380 = 1120 (м 3):

3) 1120:140 = 8(ч).

Чтобы убедиться в правильности полученного ответа, выполним проверку.

За 8 ч в первый резервуар поступит 640 м 3 (80 8 = 640), а из второ­го выкачают

480 м 3 (60 8 = 480). Тогда в первом воды будет 1020 м 3 (380 + 640 = 1020), и во втором - столько же (1500 - 480 = 1020), что удовлетворяет условию задачи.