Формула для расчета эпюр продольных сил. Эпюра продольных сил

Пример 1. Построить эпюру для колонны переменного сечения (рис. а ). Длины участков 2 м. Нагрузки: сосредоточенные =40 кН, =60 кН, =50 кН; распределенная =20 кН/м.

Рис. 1. Схема построения эпюры продольных сил N

Решение: Пользуемся методом сечений. Рассматриваем (поочередно) равновесие отсеченной (верхней) части колонны (рис. 1 в ).

Из уравнения для отсеченной части стержня в произвольном сечении участка продольная сила

(),

при =0 кН;

при =2 м кН,

в сечениях участков имеем соответственно:

КН,

КН,

КН,

Итак, в четырех сечениях продольные силы отрицательны, что указывает на деформацию сжатия (укорочения) всех участков колонны. По результатам вычислений строим эпюру продольных сил (рис. 1б ), соблюдая масштаб. Из анализа эпюры следует, что на участках, свободных от нагрузок, продольная сила постоянна, на нагруженных – переменна, в точках приложения сосредоточенных сил – изменяется скачкообразно.

Пример 2. Построить эпюру N z для стержня, приведенного на рисунке 2.

Рис. 2. Схема нагружения стержня

Решение: Стержень нагружен только сосредоточенными осевыми силами, поэтому продольная сила в пределах каждого участка постоянна. На границе участков N z претерпевает разрывы. Примем направление обхода от свободного конца (сеч. Е ) к защемлению (сеч. А ). На участке DE продольная сила положительна, так как сила вызывает растяжение, т.е. N ED = + F . В сечении D продольная сила меняется скачком от N DE = N ED = F до N D С = N D Е – 3 F = 2 F (находим из условия равновесия бесконечно малого элемента dz , выделенного на границе двух смежных участков CD и DE ).

Заметим, что скачок равен по величине приложенной силе 3 F и направлен в сторону отрицательных значений N z , так как сила 3F вызывает сжатие. На участке CD имеем N СD = N DС = 2 F . В сечении C продольная сила изменяется скачком от N СD = 2 F до N СВ = N СD + 5 F = 3 F . Величина скачка равна приложенной силе 5 F . В пределах участка продольная сила опять постоянна N СВ = N ВС =3 F . Наконец, в сечении В на эпюре N z опять скачок: продольная сила меняется от N ВС = 3 F до N ВА = N ВС – 2 F = F . Направление скачка вниз (в сторону отрицательных значений), так как сила 2 F вызывает сжатие стержня. Эпюра N z приведена на рисунке 2.

Определение перемещений

Задание

Для заданного статически определимого стального бруса требуется:

1) построить эпюры продольных сил N и нормальных напряжений σ, записав в общем виде для каждого участка выражения N и σ и указав на эпюрах их значения в характерных сечениях;

2) определить общее перемещение бруса и построить эпюру перемещений δ поперечных сечений, приняв модуль упругости Е = 2·10 МПа.

Цель работы научиться строить эпюры продольных сил и нормальных напряжений, и определять перемещения.

Теоретическое обоснование

Виды нагружения бруса, при котором в его поперечном сечении возникает только один внутренний силовой фактор – , называемый растяжением или сжатием . Равнодействующая внешних сил прикладывается в центре тяжести поперечного сечения и действует вдоль продольной оси. Внутренние силы определяются с помощью метода сечений. Нормальная сила в сечении бруса является равнодействующей нормальных напряжений, действующих в плоскости поперечного сечения

N = ∑F (5.1).

Величина продольных сил в разных сечениях бруса неодинакова. График, показывающий изменение величины продольных сил в сечении бруса по его длине, называется эпюрой продольных сил.

Закон распределения напряжений может быть определен из эксперимента. Установлено, что если на стержень нанести прямоугольную сетку, то после приложения продольной нагрузки вид сетки не изменится, она по-прежнему останется прямоугольной, а все линии прямыми. Поэтому можно сделать вывод о равномерном по сечению распределении продольных деформаций, а на основании закона Гука (σ = Eε ) и нормальных напряжений S = const. Тогда N = S· F , откуда получим формулу для определения нормальных напряжений в поперечном сечении при растяжении

σ = МПа (5.2)

A – площадь около рассматриваемого участка бруса;

N– равнодействующая внутренних сил в пределах этой площадки (согласно метода сечений).

Для обеспечения прочности стержня должно выполняться условие прочности - конструкция будет прочной, если максимальное напряжение ни в одной точке нагруженной конструкции не превышает допускаемой величины, определяемой свойствами данного материала и условиями работы конструкции, то есть

σ ≤ [σ ], τ ≤ [τ] (5.3)

При деформации бруса меняется его длина на и поперечный размер – на . Эти величины зависят и от начальных размеров бруса.

Поэтому рассматривают

– продольная деформация; (5.4)

– поперечная деформация. (5.5)

Экспериментально показано, что , где μ = 0, …, 0,5 – коэффициент Пуассона. Примеры: μ=0 – пробка, μ=0,5 – резина, – сталь.

В пределах упругой деформации выполняется закон Гука: , где E – модуль упругости, или модуль Юнга.

Порядок выполнения работы

1. Разбиваем брус на участки, ограниченные точками приложения сил (нумерацию участков ведем от незакрепленного конца);

2. Используя метод сечений, определяем величину продольных сил в сечении каждого участка: N = ∑F ;

3. Выбираем масштаб и строим эпюру продольных сил, т.е. под изображением бруса (или рядом) проводим прямую, параллельную его оси, и от этой прямой проводим перпендикулярные отрезки, соответствующие в выбранном масштабе продольным силам (положительное значение откладываем вверх (или вправо), отрицательное – вниз (или влево).

4. Определяем общее перемещение бруса и строим эпюру перемещений δ поперечных сечений.

5. Ответить на контрольные вопросы.

Контрольные вопросы

1. Что называется стержнем?

2. Какой вид нагружения стержня называются осевым растяжением (сжатием)?

3. Как вычисляется значение продольной силы в произвольном поперечном сечении стержня?

4. Что такое эпюра продольных сил и как она строится?

5. Как распределены нормальные напряжения в поперечных сечениях центрально-растянутого или центрально-сжатого стержня, и по какой формуле они определяются?

6. Что называется удлинением стержня (абсолютной продольной деформацией)? Что такое относительная продольная деформация? Каковы размерности абсолютной и относительной продольных деформаций?

7. Что называется модулем упругости Е? Как влияет величина Е на деформации стержня?

8. Сформулируйте закон Гука. Напишите формулы для абсолютной и относительной продольных деформаций стержня.

9. Что происходит с поперечными размерами стержня при его растяжении (сжатии)?

10. Что такое коэффициент Пуассона? В каких пределах он изменяется?

11. С какой целью проводятся механические испытания материалов? Какие напряжения являются опасными для пластичных и хрупких материалов?

Пример выполнения

Построить эпюры продольных сил и нормальных напряжений для нагруженного стального бруса (рис. 5.1). Определить удлинение (укорочение) бруса, если E

Рис.5.1

Дано: F = 2 kH, F = 5 kH, F = 2 kH, A = 2 см , А , l = 100 мм, l = 50 мм, l = 200 мм,

Центральным растяжением (сжатием) называется такой вид деформации, при котором в попереч­ных сечениях бруса (стержня) возникает только продольная (нормальная) сила. Считается, что внутрен­няя продольная сила действует вдоль оси стержня, перпендикулярно к его поперечным сечениям. Чис­ленные значения продольных сил N определяют по участкам, используя метод сечений, составляя урав­нения равновесия суммы проекций на ось бруса (z) всех сил, действующих на отсечённую часть.

Рассмотрим (рис. 1.2, а) прямой брус постоянной толщины, закреплённый одним концом и нагру­женный на другом конце силой Р , направленной вдоль его оси. Под действием закрепления и внешней силы Р брус растягивается (деформируется). При этом в закреплении возникает некоторое усилие, бла­годаря которому верхний край брусаостаётсянеподвижным. Это усилие называют реакцией закрепле­ния на внешнюю нагрузку. Заменим влияние закрепления на стержень эквивалентно действующей си­лой. Эта сила равна реакции закрепления R (рис. 1.2, б).

Р и неизвестной пока реакции R-

При построении уравнений общего равновесия механики принято следующее правило знаков: про­екция усилия на ось положительна, если её направление совпадает с выбранным направлением этой оси, проекция отрицательна, если направлена в противоположную сторону.

п-п (рис. 1.2, б). n-п нор­мальной силы N (рис. 1.2, в). Уравнение равновесия нижней отсечённой части бруса:

График изменения продольной силы вдоль оси бруса показан на рис. 1.2, г. График, показывающий изменение продольных сил по длине оси бруса, называется эпюрой продольных сил (эпюрой N ).

Пример. Построить эпюру внутренних нормальных сил, возникающих под действием трёх внеш­них сил (см. рис. 1.3): Р 1 =5 кН, P 2 = 8 кН, Р 3 , = 7 кН (см. рис. 1.3, а).

Используя метод сечений, определим значения внутренней силы в характерных поперечных сече­ниях бруса.

Уравнение равновесия нижней отсчетной части бруса:

сечение II-II

cечение I-I

сечение III-III

ƩZ= 0; -N+ Р 1 - Р 2 + Р 3 =0 или N=Р 1 -Р 2 + Р 3 =4 кН.

Строим эпюру нормальных сил (см. рис. 1.3,б)

Продольная сила N, возникающая в поперечном сечении бруса, представляет собой равнодейст­вующую внутренних нормальных сил, распределённых по площади поперечного сечения, и связана с возникающими в этом сечении нормальными напряжениями зависимостью



Под действием двух внешних воздействий: известной силы Р и неизвестной пока реакции R- брус находится в равновесии. Уравнение равновесия бруса

При построении уравнений общего равновесия механики принято следующее правило знаков: проекция усилия на ось положительна, если её направление совпадает с выбранным направлением этой оси, проекция отрицательна, если направлена в противоположную сторону.

Мысленно разрежем стержень на две части по интересующему нас сечению п-п (рис. 1.2, б). Влияние на нижнюю часть верхней части представим действием на нижнюю часть в её верхнем торце п-п нормальной силы N (рис. 1.2, в). Уравнение равновесия нижней отсечённой части бруса

Продольная сила N, возникающая в поперечном сечении бруса, представляет собой равнодействующую внутренних нормальных сил, распределённых по площади поперечного сечения, и связана с возникающими в этом сечении нормальными напряжениями зависимостью

здесь σ - нормальное напряжение в произвольной точке поперечного сечения, принадлежащей элемен­тарной площадке dF; F- площадь поперечного сечения бруса.

Произведение σdF=dN представляет собой элементарную внутреннюю силу, приходящуюся на площадку dF.

Значение продольной силы N в каждом частном случае легко можно определить при помощи мето­да сечений. Для нахождения напряжений в каждой точке поперечного сечения бруса надо знать закон их распределения по этому сечению.

Проведём на боковой поверхности бруса до его нагружения линии, перпендикулярные к оси бруса (рис. 1.4, а).

Каждую такую линию можно рассматривать как след плоскости поперечного сечения бруса. При нагружении бруса осевой силой Р эти линии, как показывает опыт, остаются прямыми и параллельными между собой (их положения после нагружения бруса показаны на рис. 1.4, б).


Это позволяет считать, что поперечные сечения бруса, плоские до его

на­гружения, остаются плоскими и при действии нагрузки. Такой опыт

Рис. 1.4. Деформирование бруса

подтвер­ждает гипотезу плоских сечений (гипотезу Бернулли).

Согласно гипотезе плоских сечений, все продольные волокна бруса растяги­ваются одинаково, значит их растягивают одинаковые по величине силы о dF = dN, следовательно, во всех точках поперечного сечения нормальное на­пряжение о имеет постоянное значение.

В поперечных сечениях бруса при центральном растяжении или сжатии возникают равномерно распределённые нормальные напряжения, равные от­ношению продольной силы к площади поперечного сечения .

Для наглядного изображения изменения нормальных напряжений в поперечных сечениях стержня (по его длине) строится эпюра нормальных напряжений . Осью этой эпюры является отрезок прямой, равный длине стержня и параллельный его оси. При стержне постоянного сечения эпюра нормальных напряжений имеет такой же вид, как и эпюра продольных сил (она отличается от неё лишь принятым масштабом). При стержне же переменного сечения вид этих двух эпюр различен; в частности, для стержня со ступенчатым законом изменения поперечных сечений эпюра нормальных напряжений имеет скачки не только в сечениях, в которых приложены сосредоточенные осевые нагрузки (где имеет скачки эпюра продольных сил), но и в местах изменения размеров поперечных сечений.

Решение.

1. Построение эпюры N.

На брус действуют три си­лы, следовательно, про­­до­льная си­ла по его длине будет изменяться. Разбиваем брус на участки, в пределах которых про­­до­льная сила будет постоянной. В данном случае границами участков являются сечения, в ко­­торых приложены силы. Обозначим сечения буквами А, В, С, D, начиная со свободного конца, в данном случае правого.

Для определения продольной силы на каждом участке рассматриваем про­извольное поперечное сечение, сила в котором определяется по пра­вилу, приведенному ранее. Чтобы не определять предварительно реакцию в заделке D , начинаем расчеты со свободного конца бруса А .

Участок АВ , сечение 1-1 . Справа от сечения действует растягивающая сила P 1 (рис. 15, а ). В соответствии с упомянутым ранее правилом, по­лу­ча­ем

N AB =+P 1 =40 кН.

Участок ВС , сечение 2-2 . Справа от него расположены две силы, на­правленные в разные стороны. С учетом правила знаков, получим

N B С =+P 1 -P 2 =40-90=-50 кН.

Участок СD , сечение 3-3: аналогично получаем

N С D =+P 1 -P 2 -P 3 =40-90-110=-160 кН.

По найденным значениям N в выбранном масштабе строим эпюру, учи­тывая, что в пределах каждого участка продольная сила постоянна (рис.15,б )

Положительные значения N откладываем вверх от оси эпюры, отри­ца­тель­ные - вниз.

2. Построение эпюры напряжений σ .

Вычисляем напряжения в поперечном сечении для каждого участка бруса:

При вычислении нормальных напряжений значения продольных сил N берутся по эпюре с учетом их знаков. Знак плюс соответствует растя­же­нию, минус - сжатию. Эпюра напряжений показана на рис. 15, в .

3. Построение эпюры продольных перемещений.

Для построения эпюры перемещений вычисляем абсолютные удли­нения отдельных участков бруса, используя закон Гука:

Определяем перемещения сечений, начиная с неподвижного за­кре­плен­ного конца. Сечение D расположено в заделке, оно не может сме­щать­ся и его пере­мещение равно нулю:

Сечение С переместится в результате изменения длины участка CD. Пе­ремещение сечения С определяется по формуле

∆ C =∆l CD =-6,7∙10 -4 м.

При отрицательной (сжимающей) силе точка С сместится влево.

Пере­мещение сечения В является результатом изменения длин DC и CB . Скл­а­дывая их удлинения, получаем

∆ B =∆l CD +∆l BC =-6,7∙10 -4 -2,1∙10 -4 = -8,8∙10 -4 м.

Рассуждая аналогично, вычисляем перемещение сечения А :

∆ A =∆l CD +∆l BC +∆l AB =-6,7∙10 -4 -2,1∙10 -4 +0,57∙10 -4 = -8,23∙10 -4 м.

В выбранном масштабе откладываем от исходной оси значения вычис­лен­ных перемещений. Соединив полученные точки прямыми линиями, стр­о­­­им эпю­ру перемещений (рис.15, г ).

4. Проверка прочности бруса.

Условие прочности записывается в следующем виде:

Максимальное напряжение σ max находим по эпюре напряжений, выби­рая максимальное по абсолютной величине:

σ max =267 Мпа.

Это напряжение действует на участке DC , все сечения которого являются опасным.

Допускаемое напряжение вычисляем по формуле:

Сравнивая σ max и [σ], видим, что условие прочности не выполняется, так как максимальное напряжение превышает допускаемое.

Пример 4

Подобрать из условий прочности и жесткости размеры прямоугольного поперечного сечения чугунного стержня (см. рис. 16, а ).

Дано: F=40 кН; l =0,4 м; [σ p ]=350 Мпа; [σ с ]=800 Мпа; Е=1,2∙10 5 МПа; [∆l]=l/200; h/b=2, где h – высота, b – ширина поперечного сечения.

Рис.16

Решение.

1. Построение эпюры внутренних усилий N

Стержень разделен на 3 участка в зависимости от изменения внешней нагрузки и площади поперечного сечения. Применяя метод сечений, определяем продольную силу на каждом участке.

На участке 1: N 1 =-F=-40 кН.

На участке 2: N 2 =-F+3F=2F=80 кН.

На участке 3: N 3 =-F+3F-2F=F=40 кН.

Эпюра N приведена на рис. 16, б .

2. Построение эпюры нормальных напряжений

Найдем напряжения на участках стержня.

На участке 1:

На участке 2:

На участке 3:

Эпюра σ приведена на рис. 16, в .

3. Нахождение площади поперечного сечения из условия прочности

Наибольшие растягивающие напряжения возникают на участке 2, наибольшие сжимающие напряжения – на участке 1. Для вычисления площади поперечного сечения используем условия прочности σ max . p ≤[σ p ] и σ max .с ≤[σ с ].

Напряжения на участке 1 равны

Следовательно,

Напряжения на участке 2 равны

По условию прочности

Напряжения на участке 3 равны

Следовательно,

Необходимую площадь сечения следует принять из условия прочности при растяжении:

При заданном соотношении h/b=2 площадь поперечного сечения можно записать, как A=h∙b=2b 2 . Размеры поперечного сечения будут равны:

4. Нахождение площади поперечного сечения из условия жесткости

При расчете на жесткость следует учитывать, что перемещение в точке d будет равно сумме деформаций всех участков стержня. Величину абсолютной деформации для каждого участка найдем по формуле

или

На участке 1:

На участке 2:

На участке 3:

Абсолютная деформация всего стержня:

Из условия жесткости ∆l ≤[∆l ], найдем

, откуда

Размеры поперечного сечения будут равны:

Сопоставляя результаты расчета на прочность и жесткость, принимаем большее значение площади поперечного сечения A=2,65 см 2 .

5. Построение эпюры перемещений 𝜆

Для определения перемещения любого сечения стержня строят эпюру перемещений𝜆 . За начало отсчета принимаем сечение в заделке, так как перемещение этого сечения равно нулю. При построении эпюры последовательно определяем перемещения характерных сечений стержня, которые равны алгебраической сумме изменений длин всех участков от начала отсчета до рассматриваемого сечения.

Сечение а:

Сечение b:

Сечение с:

Сечение d:

Эпюра перемещений λ представлена на рис.16, г .

Пример 5

Для ступенчатого бруса (рис. 17, а ) при Е=2∙10 5 Мпа, σ Т = 240 МПа, требуется определить:

1. Внутренние продольные силы по его длине и построить эпюру продольных сил.

2. Нормальные напряжения в поперечных сечениях и построить эпюру нормальных напряжений.

3. Запас прочности для опасного сечения.

4. Перемещения сечений и построить эпюру перемещений.

Дано: F 1 = 30кН; F 2 = 20кН; F 3 = 60 кН; l 1 = 0,5м; l 2 = 1,5м; l 3 = 1м; l 4 = 1м; l 5 = l 6 = 1м; d 1 = 4см; d 2 = 2см.

Рис.17

Решение.

1. Определение продольных сил в характерных сечениях бруса, и построение эпюры продольных сил.

Изображаем расчетную схему (рис. 17,а ) и определяем реакцию опоры в заделке, которую направляем с внешней стороны заделки влево. Если в результате определения реакции R В окажется отрицательной, то это указывает на то, что ее направление противоположно. Ступенчатый брус под действием сил F 1 , F 2 , F 3 и реакции R В находятся в равновесии, поэтому для определения R В достаточно составить одно уравнение проекций всех сил на ось х , совпадающую с осью бруса.

ΣF ix =-F 1 -F 2 +F 3 -R B =0

Откуда R B =-F 1 -F 2 +F 3 =-30-20+60=10 кН

Разграничим брус на участки. Границами участков являются сечения, в которых приложены внешние силы, а для напряжений также и места изменения размеров поперечного сечения (рис. 17,а)

Пользуясь методом сечений, определяем для каждого участка величину и знак продольной силы. Проведем сечение 1–1 и рассмотрим равновесие правой отсеченной части бруса (рис. 17,б). Внутренние силы в каждом сечении условно направляем в сторону отброшенной части. Если внутренняя продольная сила положительна на участке, имеет место деформация растяжения; отрицательна – сжатие.

Рассматривая правую отсеченную часть, находим

ΣF ix =-N 1 -R B =0; N 1 =-R B =-10 кН (сжатие)

Значение продольной силы в пределах первого участка не зависит от того, какую из отсеченных частей мы рассматривали. Целесообразнее всегда рассматривать ту часть бруса, к которой приложено меньше сил. Проведя сечения в пределах второго, третьего и четвертого участков, аналогично найдем:

для сечения 2–2 (рис. 17,в)

ΣF ix =-N 2 +F 3 -R B =0; N 2 =F 3 -R B =60-10=50 кН (растяжение).

для сечения 3–3, рассматриваем левую часть бруса (рис. 17,г)

ΣF ix =-F 1 -N 3 =0; N 3 =F 1 =30 кН (растяжение).

для сечения 4–4 (рис. 17,д)

ΣF ix =N 4 =0; N 4 =0 эта часть бруса не испытывает деформации.

После определения внутренних продольных сил в характерных сечениях, строят график их распределения по длине бруса. График, показывающий, как изменяются продольные силы (N ) при переходе от одного сечения к другому, т.е. график, изображающий закон изменения N вдоль оси бруса, называется эпюрой продольных сил .

Эпюра продольной силы строится в следующей последовательности. В разграниченном на участки брусе провести через точки приложения внешних сил линии, перпендикулярные его оси. На некотором расстоянии от оси бруса провести линию параллельную его оси: на перпендикуляре к этой линии отложить в выбранном масштабе отрезок, соответствующий продольной силе для каждого участка: положительные вверх от оси эпюры, отрицательные – вниз. Через концы отрезков провести линии, параллельные оси. Ось эпюры проводят тонкой линией, а саму эпюру очерчивают толстыми линиями, эпюру штрихуют тонкими линиями, перпендикулярными ее оси. В масштабе каждая линия равна продольной силе в соответствующем сечении бруса. На эпюре указывают знаки плюс и минус и в характерных ее точках, где изменяется сила, проставляют ее значение. В сечениях, в которых приложены сосредоточенные силы, на эпюре имеются скачки – резкое изменение продольной силы "Скачок" продольной силы равен внешней силе, приложенной в данном сечении, что является проверкой правильности построенной эпюры. На (рис. 18,б) построена эпюра продольных сил для заданного ступенчатого бруса.

2. Определение нормальных напряжений в поперечных сечениях бруса и построение эпюры нормальных напряжений.

Нормальные напряжения на каждом участке определяем по формуле σ=N/A, подставляя в ее значение сил (в Н ) и площадей (в мм 2 ). Площади поперечных сечений бруса определяем по формуле A=πd 2 /4

Нормальные напряжения на участках I–VI равны соответственно:

I. т.к. N 4 = 0

В пределах каждого участка напряжение одинаково, так как одинаковы во всех сечениях значения продольной силы и площади поперечного сечения. Эпюра σ очерчена прямыми, параллельными ее оси. Построение по вычисленным значениям эпюры представлена на (рис. 18,в).

3. Определение запаса прочности для опасного сечения.

Из эпюры нормальных напряжений, построенной по длине бруса видно, что наибольшее напряжение возникает в пределах четвертого участка σ max =159,2 Н/мм 2 , следовательно, запас прочности

4. Определение перемещений сечений и построение эпюры перемещений.

Для построения эпюры перемещений достаточно определить перемещения крайних сечений каждого участка. Перемещение сечения определим как алгебраическую сумму деформаций участков стержня, расположенных между этим сечением и заделкой, т.е. неподвижным сечением.

Абсолютные перемещения сечений вычислим по формулам:

Эпюра продольных перемещений представлена на (рис. 18,г). В случае проверки жесткости следует сравнить полученное максимальное значение ∆l = 1,55 мм с допускаемым [∆l ] для данного бруса.

Рис.18

Пример 6

Для ступенчатого бруса (рис.19) требуется:

1. Построить эпюру продольных сил

2. Определить нормальные напряжения в поперечных сечениях и построить эпюру

3. Построить эпюру перемещений поперечных сечений.

Дано:

Рис.19

Решение.

1. Определим нормальные усилия

Участок AB :

Участок BC :

Участок CD :

Эпюра продольных сил показана на рис.20.

2. Определим нормальные напряжения

Участок AB :

Участок BC :

Участок CD :

Эпюра нормальных напряжений σ показана на рис.20.

3. Определим перемещения поперечных сечений

Эпюра перемещений δ показана на рис.20.

Рис.20

Пример 7

Для ступенчатого стального стержня (рис.21) требуется:

1. Построить эпюры продольных сил N и нормальных напряжений σ.

2. Определить продольную деформацию стержня ∆l .

Е = 2∙10 5 МПа; А 1 = 120 мм 2 ; А 2 = 80 мм 2 ; А 3 = 80 мм 2 ; а 1 = 0,1 м; а 2 = 0,2 м; а 3 = 0,2 м; F 1 = 12 кН; F 2 = 18 кН; F 3 = -12 кН.

Решение.

1. Построение эпюр N и σ

Применяем метод сечений.

Участок 1.

ΣХ = 0 → -N 1 + F 1 = 0; N 1 = F 1 = 12 кН;

Участок 2.

ΣХ = 0 → -N 2 + F 2 + F 1 = 0;

N 2 = F 2 + F 1 = 18 + 12 = 30 кН;

Участок 3

ΣХ = 0 → - N 3 - F 3 + F 2 + F 1 = 0;

N 3 = - F 3 + F 2 + F 1 = -12 + 18 + 12 = 18 кН;

2. Расчетная схема с истинным направлением внешней нагрузки и расчетными эпюрами.

Рис.21

3. Определение продольной деформации стержня

Пример 8

Для бруса, жестко заделанного обоими концами и нагруженного вдоль оси силами F 1 и F 2 приложенными в его промежуточных сечениях (рис. 22,а ), требуется

1) Построить эпюры продольных сил,

2) Построить эпюры нормальных напряжений

3) Построить эпюры перемещений поперечных сечений

4) Проверить прочность бруса.

Дано: если материал – сталь ст.3, F = 80 кН, σ т = 240 МПа, А = 4 см 2 , а = 1 м, требуемый коэффициент запаса [n ] = 1,4, Е = 2∙10 5 МПа.

Рис.22

Решение.

1. Статическая сторона задачи .

Поскольку силы F 1 и F 2 действуют вдоль оси стержня на его концах, под действием сил F 1 и F 2 в заделках могут возникнуть только горизонтальные опорные реакции R А и R В . В данном случае имеем систему сил, направленных по одной прямой (рис. 22,а ), для которой статика дает лишь одно уравнение равновесия.

ΣF ix = -R А + F 1 + F 2 – R В = 0; R А + R В = F 1 + F 2 = 3F (1)

Неизвестных реактивных сил две R А и R В , следовательно, система один раз статически неопределима, т.е. необходимо составить одно дополнительное уравнение перемещений.

2. Геометрическая сторона задачи .

Для раскрытия статической неопределимости, т.е. составления уравнения перемещений, отбросим одну из заделок, например правую (рис. 22,б ). Получаем статически определимый брус, заделанный одним концом. Такой брус называют основной системой. Действие отброшенной опоры заменяем реакцией R В = Х . В результате имеем статически определимый брус, нагруженный кроме заданных сил F 1 и F 2 неизвестной реактивной силой R В = Х . Этот статически определимый брус нагружен так же как заданный статически неопределимый, т.е. эквивалентен ему. Эквивалентность этих двух брусьев позволяет утверждать, что второй брус деформируется так же, как первый, т.е. перемещение ∆ В – сечения В равно нулю, так как фактически (в заданном брусе) оно жестко заделано: ∆ В = 0.

На основе принципа независимости действия сил (результатом действия на тело системы сил не зависит от последовательности их приложения и равен сумме результатов действия каждой силы в отдельности) перемещение сечения В представим как алгебраическую сумму перемещений от сил F 1 , F 2 и Х , т.е. уравнение совместности деформаций примет вид:

∆ B =∆ BF1 +∆ BF2 +∆ BX =0 (2)

В обозначениях перемещений первая буква индекса указывает о перемещении какого сечения идет речь; вторая – причину, вызывающую это перемещение (силы F 1 , F 2 и Х ).

3. Физическая сторона задачи .

На основании закона Гука выражаем перемещения сечения В, через действующие силы F 1 , F 2 и неизвестную реакцию Х .

На (рис. 22, в, г, д ), показаны схемы нагружения бруса каждой из сил в отдельности и перемещения сечения В от этих сил.

Пользуясь этими схемами, определяем перемещения:

равно удлинению участка АС ;

равно удлинению участков АД и ДЕ ;

равно сумме укорочений участков АД, ДК, КВ.

4. Синтез.

Подставим значения , , в уравнение (2), имеем

Следовательно:

Подставляя R В в уравнение (1), получим:

R А + 66,7 =3∙80 = 240

отсюда R А =240–66,7=173,3 кН, R А = 173,3 кН, таким образом, статическая неопределимость раскрыта – имеем статически определимый брус, заделанный одним концом, нагруженный известными силами F 1 , F 2 и Х = 66,7 кН.

Эпюру продольных сил строим как для статически определимого бруса. На основании метода сечений внутренние продольные силы в характерных участках равны:

N АС = R А = 173,3 кН;

N СЕ = R А - 2F = 173,3 - 80∙2 = 13,3 кН;

N ЕВ = -R А = - 66,7 кН.

Эпюра продольных сил представлена на (рис. 22, е ). Значения нормальных напряжений в характерных сечениях определяем по формуле

Для участка АС

для участка СД

для участка ДЕ

для участка ЕК

для участка КВ

В пределах каждого из участников напряжения постоянны, т.е. эпюра "σ" – прямая, параллельная оси бруса (рис.22, ж ).

При расчете на прочность интерес представляют те сечения, в которых возникают наибольшие напряжения. В рассмотренном примере они не совпадают с теми сечениями, в которых продольные силы максимальны, наибольшее напряжение возникает на участке ЕК , где σ мах = - 166,8 МПа.

Из условия задачи следует, что предельное напряжение для бруса

σ пред = σ т = 240 МПа, поэтому допускаемое напряжение

Отсюда следует, что расчетное напряжение σ = 166,8 МПа < 171,4 МПа, т.е. условие прочности выполняется. Разница между расчетным напряжением и допускаемым составляет:

Перегрузка или недогрузка допускается в пределах ±5%.

При построении эпюры перемещений достаточно определить перемещения сечений совпадающих с границами участков, так как между указанными сечениями эпюра ∆l имеет линейный характер. Начинаем строить эпюру перемещений от левого защемленного конца бруса, в котором ∆ А = 0; так как оно неподвижно.

Итак, на правом конце бруса в сечении В , ордината эпюры ∆l равна нулю, так как в заданном брусе это сечение жестко защемлено, по вычисленным значениям построена эпюра ∆l (рис.22, з).

Пример 9

Для составного ступенчатого бруса, состоящего из меди и стали и нагруженного сосредоточенной силой F (рис. 23,а ), определить внутренние продольные силы и построить их эпюры, если известны модули упругости материала: для стали E c , для меди E M .

Рис.23

Решение.

1. Составляют уравнение статического равновесия:

ΣZ=0;R B -F+R D =0. (1)

Задача один раз статически неопределима, поскольку обе реакции могут быть определены только из одного уравнения.

2. Условие совместности перемещений должно выразить тот факт, что общая длина бруса не меняется, т.е. перемещения, например, сечения

Используя закон Гука σ=Eε, с учетом того факта, что перемещения какого-либо поперечного сечения бруса численно равны удлинению или укорочению его участков, расположенных между заделкойBи «перемещающимся» сечениемD, преобразуют уравнение (2) к виду:

Отсюда R D =0,33F. (4)

Подставив (4) в (1), определяют

R B =F-R D =F-0,33F=0,67F. (5)

Тогда, применив метод сечений, согласно выражению N i =ΣF i , получают:

N DC =-R D ;N BC =R B .

Приняв для наглядности решения

l M =l ; l c =2l ; A M =4A C ; E C =2E M .

с учетом (4) получают N DC =-R D = -0,33F,

a с учетом (5) получают N BC =R B =0,67F.

Эпюра продольных сил N показана на рис. 16, б.

Расчет на прочность после этого выполняют согласно условию прочности

Пример 10

Брус ступенчато-переменного сечения, расчетная схема которого показана на рисунке 24, находится в условиях центрального (осевого) растяжения-сжатия под действием заданной нагрузки.

Требуется:

1) Раскрыть статическую неопределимость;

2) Построить эпюры нормальных сил и нормальных напряжений (в буквенном выражении величин);

3) Подобрать сечение бруса по условию прочности;

4) Построить эпюру продольных перемещений поперечных сечений.

Влиянием собственного веса бруса пренебречь, опорные устройства считать абсолютно жесткими.

материал – чугун, допускаемые напряжения (расчетные сопротивления):

Принять: для чугуна

Параметр Fподлежит определению из условий прочности, а параметрP при выполнении п.3 задания, принять:

Примечание:

1) В расчетной схеме между нижним торцом бруса и опорой до нагружения бруса имеется зазор . Коэффициентпринять соответственно равным 1.

2) При отсутствии на расчетной схеме одной из сил P 1 илиP 2 соответствующий коэффициент (α 1 или α 2) считать равным нулю

3) При выполнении п.3 задания следует пользоваться методом допускаемых напряжений

Рис.24

Решение:

1) В результате нагружения бруса, в его заделках возникают реакции направленные вдоль оси (рис.25). Определяем реакцию в заделке. Предварительно направляем ее вверх.

Рис.25

Составляем уравнение равновесия:

Это уравнение является единственным и содержит две неизвестные силы. Следовательно, система один раз статически неопределима.

Раскрываем статическую неопределимость:

Выразим удлинения через силы:

Подставим в уравнение равновесия:

Таким образом, статическая неопределимость раскрыта.

2) Разобьем брус на 3 участка (рис.26), начиная от его свободного конца; границами участков служат сечения, где приложены внешние силы, а также места изменения размеров поперечного сечения.

Рис.26

Произведем произвольное сечение 1 – 1 на участке I, и, отбросив верхнюю часть бруса, рассмотрим условия равновесия оставленной нижней части, изображенной отдельно (рис.27,б ).

На оставленную часть действует сила R B искомое усилие. Проектируя на осьZсилы, действующие остальную часть, получаем.

Проведем произвольное сечение 2 – 2 на участке II, и, отбросив верхнюю часть бруса, рассмотрим условия равновесия оставленной нижней части, изображенной отдельно (рис.27,в ).

.

Проведем произвольное сечение 3 – 3 на участке III, и, отбросив верхнюю часть бруса, рассмотрим условия равновесия оставленной нижней части, изображенной отдельно (рис.27,г ).

.

Построим график (эпюру), показывающий, как меняется N по длине бруса (рис.27,д ).

Эпюру нормальных напряжений получим, разделив значения Nна соответствующие площади поперечных сечений бруса, т.е.

Для Iучастка:

Для IIучастка:

Для IIIучастка:

Построим эпюру нормальных напряжений (рис.27, е ).

3) Расчет прочности выполняется с использованием условий прочности. Условие прочности конструкции записывается в виде:

где – наибольшие расчетные растягивающие и сжимающие напряжения в конструкции;

–допускаемые напряжения при растяжении и сжатии соответственно.

Подбор сечения бруса в данном случае осуществляется по условию прочности третьего участка, т.к. на этом участке возникают наибольшие растягивающие напряжения:

Принимаем

По найденному значению параметра F определяем площади сечений участков бруса:

Подбор сечений чугунного бруса по условию прочности на сжатие производить не будем, т.к. наибольшее значения сжимающих напряжений меньше растягивающих, а

4) Построим эпюру продольных перемещений поперечных сечений. Она строится суммированием упругих удлинений участков, начиная с неподвижного конца.

Определим изменение длин участков бруса по формуле:

Для III участка

Для II участка

Для I участка

По условию в расчетной схеме между нижним торцом бруса и опорой до нагружения бруса (участок I) имеется зазор. Коэффициентпо условию равен 1, тогда зазор будет равен.

Находим осевые перемещения сечений бруса по границам участком:

Построим эпюру продольных перемещений поперечных сечений (рис.27, ж ).

Рис.27

Пример 11

Для статически неопределимого стержня (рис.28) требуется построить эпюры продольных сил и нормальных напряжений.

Дано: l 1 = 1 м;l 2 = 0,8 м;F 2 = 15 см 2 = 15·10 -4 м 2 ;F 2 /F 1 = 2,1;P=190 кН = 190·10 3 Н; ∆t= 30K; δ = 0,006 см = 6·10 -5 м;E= 1·10 5 МПа =1·10 11 Па; α= 17·10 -6 K.

Все многообразие существующих опорных устройств схематизируется в виде ряда основных типов опор, из которых

наиболее часто встречаются: шарнирно-подвижная опора (возможные обозначения для нее представлены на рис.1,а), шарнирно-неподвижная опора (рис.1,б) и жесткое защемление , или заделка (рис.1,в).

В шарнирно-подвижной опоре возникает одна опорная реакция, перпендикулярная опорной плоскости. Такая опора лишает опорное сечение одной степени свободы, то есть препятствует смещению в направлении опорной плоскости, но допускает перемещение в перпендикулярном направлении и поворот опорного сечения.
В шарнирно-неподвижной опоре возникают вертикальная и горизонтальная реакции. Здесь невозможны перемещения по направлениям опорных стержней, но допускается поворот опорного сечения.
В жесткой заделке возникают вертикальная и горизонтальная реакции и опорный (реактивный) момент. При этом опорное сечение не может смещаться и поворачиваться.При расчете систем, содержащих жесткую заделку, возникающие опорные реакции можно не определять, выбирая при этом отсеченную часть так, чтобы заделка с неизвестными реакциями в нее не попадала. При расчете систем на шарнирных опорах реакции опор должны быть определены обязательно. Уравнения статики, используемые для этого, зависят от вида системы (балка, рама и др.) и будут приведены в соответствующих разделах настоящего пособия.

2. Построение эпюр продольных сил Nz

Продольная сила в сечении численно равна алгебраической сумме проекций всех сил, приложенных по одну сторону от рассматриваемого сечения, на продольную ось стержня.

Правило знаков для Nz: условимся считать продольную силу в сечении положительной, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части стержня, вызывает растяжение и отрицательной - в противном случае.

Пример 1. Построить эпюру продольных сил для жестко защемленной балки (рис.2).

Порядок расчета:

1. Намечаем характерные сечения, нумеруя их от свободного конца стержня к заделке.
2. Определяем продольную силу Nz в каждом характерном сечении. При этом рассматриваем всегда ту отсеченную часть, в которую не попадает жесткая заделка.

По найденным значениям строим эпюру Nz. Положительные значения откладываются (в выбранном масштабе) над осью эпюры, отрицательные - под осью.

3. Построение эпюр крутящих моментов Мкр .

Крутящий момент в сечении численно равен алгебраической сумме внешних моментов, приложенных по одну сторону от рассматриваемого сечения, относительно продольной оси Z.

Правило знаков для Мкр : условимся считать крутящий момент в сечении положительным, если при взгляде на сечение со стороны рассматриваемой отсеченной части внешний момент виден направленным против движения часовой стрелки и отрицательным - в противном случае.

Пример 2. Построить эпюру крутящих моментов для жестко защемленного стержня (рис.3,а).

Порядок расчета.

Следует отметить, что алгоритм и принципы построения эпюры крутящих моментов полностью совпадают с алгоритмом и принципами построения эпюры продольных сил .

1.Намечаем характерные сечения.
2.Определяем крутящий момент в каждом характерном сечении.

По найденным значениям строимэпюру Мкр (рис.3,б).

4. Правила контроля эпюр Nz и Мкр .

Для эпюр продольных сил и крутящих моментов характерны определенные закономерности, знание которых позволяет оценить правильность выполненных построений.

1. Эпюры Nz и Мкр всегда прямолинейные.

2. На участке, где нет распределенной нагрузки, эпюра Nz(Мкр) - прямая, параллельная оси, а на участке под распределенной нагрузкой - наклонная прямая.

3. Под точкой приложения сосредоточенной силы на эпюре Nz обязательно должен быть скачок на величину этой силы, аналогично под точкой приложения сосредоточенного момента на эпюре Мкр будет скачок на величину этого момента.

5. Построение эпюр поперечных сил Qy и изгибающих моментов Mx в балках

Стержень, работающий на изгиб, называется балкой . В сечениях балок, загруженных вертикальными нагрузками, возникают, как правило, два внутренних силовых фактора - Qy и изгибающий момент Mx .

Поперечная сила в сечении численно равна алгебраической сумме проекций внешних сил, приложенных по одну сторону от рассматриваемого сечения, на поперечную (вертикальную) ось.

Правило знаков для Qy: условимся считать поперечную силу в сечении положительной, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части, стремится повернуть данное сечение по часовой стрелке и отрицательной - в противном случае.

Схематически это правило знаков можно представить в виде

Изгибающий момент Mx в сечении численно равен алгебраической сумме моментов внешних сил, приложенных по одну сторону от рассматриваемого сечения, относительно оси x , проходящей через данное сечение.

Правило знаков для Mx: условимся считать изгибающий момент в сечении положительным, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части, приводит к растяжению в данном сечении нижних волокон балки и отрицательной - в противном случае.

Схематически это правило знаков можно представить в виде:

Следует отметить, что при использовании правила знаков для Mx в указанном виде, эпюра Mx всегда оказывается построенной со стороны сжатых волокон балки.

6. Консольные балки

При построении эпюр Qy и Mx в консольных, или жестко защемленных, балках нет необходимости (как и в рассмотренных ранее примерах) вычислять опорные реакции, возникающие в жесткой заделке, но выбирать отсеченную часть нужно так, чтобы заделка в нее не попадала.

Пример 3. Построить эпюры Qy и Mx (рис.4).

Порядок расчета .

1. Намечаем характерные сечения.