Строение клетки. Особенности строения, свойства и функции цитоплазмы За что отвечает цитоплазма

Цитоплазма — обязательная часть клетки, заключенная между плазматической мембраной и ядром; подразделяется на гиалоплазму (основное вещество цитоплазмы), органоиды (постоянные компоненты цитоплазмы) и включения (временные компоненты цитоплазмы). Химический состав цитоплазмы: основу составляет вода (60-90% всей массы цитоплазмы), различные органические и неорганические соединения. Цитоплазма имеет щелочную реакцию. Характерная особенность цитоплазмы эукариотической клетки — постоянное движение (циклоз ). Оно обнаруживается, прежде всего, по перемещению органоидов клетки, например хлоропластов. Если движение цитоплазмы прекращается, клетка погибает, так как, только находясь в постоянном движении, она может выполнять свои функции.

Гиалоплазма (цитозоль ) представляет собой бесцветный, слизистый, густой и прозрачный коллоидный раствор. Именно в ней протекают все процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов. В зависимости от преобладания в гиалоплазме жидкой части или крупных молекул, различают две формы гиалоплазмы: золь — более жидкая гиалоплазма и гель — более густая гиалоплазма. Между ними возможны взаимопереходы: гель превращается в золь и наоборот.

Функции цитоплазмы:

  1. объединение всех компонентов клетки в единую систему,
  2. среда для прохождения многих биохимических и физиологических процессов,
  3. среда для существования и функционирования органоидов.

Клеточные оболочки

Клеточные оболочки ограничивают эукариотические клетки. В каждой клеточной оболочке можно выделить как минимум два слоя. Внутренний слой прилегает к цитоплазме и представлен плазматической мембраной (синонимы — плазмалемма, клеточная мембрана, цитоплазматическая мембрана), над которой формируется наружный слой. В животной клетке он тонкий и называется гликокаликсом (образован гликопротеинами, гликолипидами, липопротеинами), в растительной клетке — толстый, называется клеточной стенкой (образован целлюлозой).

Все биологические мембраны имеют общие структурные особенности и свойства. В настоящее время общепринята жидкостно-мозаичная модель строения мембраны . Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами. Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты; участок молекулы, в котором находится остаток фосфорной кислоты, называют гидрофильной головкой, участки, в которых находятся остатки жирных кислот — гидрофобными хвостами. В мембране фосфолипиды располагаются строго упорядоченно: гидрофобные хвосты молекул обращены друг к другу, а гидрофильные головки — наружу, к воде.

Помимо липидов в состав мембраны входят белки (в среднем ≈ 60%). Они определяют большинство специфических функций мембраны (транспорт определенных молекул, катализ реакций, получение и преобразование сигналов из окружающей среды и др.). Различают: 1) периферические белки (расположены на наружной или внутренней поверхности липидного бислоя), 2) полуинтегральные белки (погружены в липидный бислой на различную глубину), 3) интегральные, или трансмембранные, белки (пронизывают мембрану насквозь, контактируя при этом и с наружной, и с внутренней средой клетки). Интегральные белки в ряде случаев называют каналообразующими, или канальными, так как их можно рассматривать как гидрофильные каналы, по которым в клетку проходят полярные молекулы (липидный компонент мембраны их бы не пропустил).

А — гидрофильная головка фосфолипида; В — гидрофобные хвостики фосфолипида; 1 — гидрофобные участки белков Е и F; 2 — гидрофильные участки белка F; 3 — разветвленная олигосахаридная цепь, присоединенная к липиду в молекуле гликолипида (гликолипиды встречаются реже, чем гликопротеины); 4 — разветвленная олигосахаридная цепь, присоединенная к белку в молекуле гликопротеина; 5 — гидрофильный канал (функционирует как пора, через которую могут проходить ионы и некоторые полярные молекулы).

В состав мембраны могут входить углеводы (до 10%). Углеводный компонент мембран представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины) или липидов (гликолипиды). В основном углеводы располагаются на наружной поверхности мембраны. Углеводы обеспечивают рецепторные функции мембраны. В животных клетках гликопротеины образуют надмембранный комплекс — гликокаликс, имеющий толщину несколько десятков нанометров. В нем располагаются многие рецепторы клетки, с его помощью происходит адгезия клеток.

Молекулы белков, углеводов и липидов подвижны, способны перемещаться в плоскости мембраны. Толщина плазматической мембраны — примерно 7,5 нм.

Функции мембран

Мембраны выполняют такие функции:

  1. отделение клеточного содержимого от внешней среды,
  2. регуляция обмена веществ между клеткой и средой,
  3. деление клетки на компартаменты («отсеки»),
  4. место локализации «ферментативных конвейеров»,
  5. обеспечение связи между клетками в тканях многоклеточных организмов (адгезия),
  6. распознавание сигналов.

Важнейшее свойство мембран — избирательная проницаемость, т.е. мембраны хорошо проницаемы для одних веществ или молекул и плохо проницаемы (или совсем непроницаемы) для других. Это свойство лежит в основе регуляторной функции мембран, обеспечивающей обмен веществ между клеткой и внешней средой. Процесс прохождения веществ через клеточную мембрану называют транспортом веществ . Различают: 1) пассивный транспорт — процесс прохождения веществ, идущий без затрат энергии; 2) активный транспорт — процесс прохождения веществ, идущий с затратами энергии.

При пассивном транспорте вещества перемещаются из области с более высокой концентрацией в область с более низкой, т.е. по градиенту концентрации. В любом растворе имеются молекулы растворителя и растворенного вещества. Процесс перемещения молекул растворенного вещества называют диффузией, перемещения молекул растворителя — осмосом. Если молекула заряжена, то на ее транспорт влияет и электрический градиент. Поэтому часто говорят об электрохимическом градиенте, объединяя оба градиента вместе. Скорость транспорта зависит от величины градиента.

Можно выделить следующие виды пассивного транспорта: 1) простая диффузия — транспорт веществ непосредственно через липидный бислой (кислород, углекислый газ); 2) диффузия через мембранные каналы — транспорт через каналообразующие белки (Na + , K + , Ca 2+ , Cl -); 3) облегченная диффузия — транспорт веществ с помощью специальных транспортных белков, каждый из которых отвечает за перемещение определенных молекул или групп родственных молекул (глюкоза, аминокислоты, нуклеотиды); 4) осмос — транспорт молекул воды (во всех биологических системах растворителем является именно вода).

Необходимость активного транспорта возникает тогда, когда нужно обеспечить перенос через мембрану молекул против электрохимического градиента. Этот транспорт осуществляется особыми белками-переносчиками, деятельность которых требует затрат энергии. Источником энергии служат молекулы АТФ. К активному транспорту относят: 1) Na + /К + -насос (натрий-калиевый насос), 2) эндоцитоз, 3) экзоцитоз.

Работа Na + /К + -насоса . Для нормального функционирования клетка должна поддерживать определенное соотношение ионов К + и Na + в цитоплазме и во внешней среде. Концентрация К + внутри клетки должна быть значительно выше, чем за ее пределами, а Na + — наоборот. Следует отметить, что Na + и К + могут свободно диффундировать через мембранные поры. Na + /К + -насос противодействует выравниванию концентраций этих ионов и активно перекачивает Na + из клетки, а K + в клетку. Na + /К + -насос представляет собой трансмембранный белок, способный к конформационным изменениям, вследствие чего он может присоединять как K + , так и Na + . Цикл работы Na + /К + -насоса можно разделить на следующие фазы: 1) присоединение Na + с внутренней стороны мембраны, 2) фосфорилирование белка-насоса, 3) высвобождение Na + во внеклеточном пространстве, 4) присоединение K + с внешней стороны мембраны, 5) дефосфорилирование белка-насоса, 6) высвобождение K + во внутриклеточном пространстве. На работу натрий-калиевого насоса тратится почти треть всей энергии, необходимой для жизнедеятельности клетки. За один цикл работы насос выкачивает из клетки 3Na + и закачивает 2К + .

Эндоцитоз — процесс поглощения клеткой крупных частиц и макромолекул. Различают два типа эндоцитоза: 1) фагоцитоз — захват и поглощение крупных частиц (клеток, частей клеток, макромолекул) и 2) пиноцитоз — захват и поглощение жидкого материала (раствор, коллоидный раствор, суспензия). Явление фагоцитоза открыто И.И. Мечниковым в 1882 г. При эндоцитозе плазматическая мембрана образует впячивание, края ее сливаются, и происходит отшнуровывание в цитоплазму структур, отграниченных от цитоплазмы одиночной мембраной. К фагоцитозу способны многие простейшие, некоторые лейкоциты. Пиноцитоз наблюдается в эпителиальных клетках кишечника, в эндотелии кровеносных капилляров.

Экзоцитоз — процесс, обратный эндоцитозу: выведение различных веществ из клетки. При экзоцитозе мембрана пузырька сливается с наружной цитоплазматической мембраной, содержимое везикулы выводится за пределы клетки, а ее мембрана включается в состав наружной цитоплазматической мембраны. Таким способом из клеток желез внутренней секреции выводятся гормоны, у простейших — непереваренные остатки пищи.

    Перейти к лекции №5 «Клеточная теория. Типы клеточной организации»

    Перейти к лекции №7 «Эукариотическая клетка: строение и функции органоидов»

Цитоплазму называют внутренней средой организма, потому что она постоянно перемещается и приводит в движение все клеточные компоненты. В цитоплазме постоянно идут обменные процессы, содержатся все органические и не органические вещества.

Строение

Цитоплазма состоит из постоянной жидкой части – гиалоплазмы и элементов, которые меняются – органелл и включений.

Органеллы цитоплазмы делятся на мембранные и немембранные, последние в свою очередь могут быть двухмембранные и одномембранные.

  1. Немембранные органеллы : рибосомы, вакуоли, центросома, жгутики.
  2. Двухмембранные органеллы : митохондрии, пластиды, ядро.
  3. Одномембранные органеллы : аппарат Гольджи, лизосомы, вакуоли эндоплазматический ретикулум.

Также к компонентам цитоплазмы относятся клеточные включения, представлены в виде липидных капель или гранул гликогена.

Основные признаки цитоплазмы:

  • Бесцветная;
  • эластичная;
  • слизисто-вязкая;
  • структурированная;
  • подвижная.

Жидкая часть цитоплазмы по своему химическому составу отличается в клетках разной специализации. Основное вещество – вода от 70% до 90%, также в состав входят протеины, углеводы, фосфолипиды, микроэлементы, соли.

Кислотно-щелочное равновесие поддерживается на уровне 7,1–8,5pH (слабощелочное).

Цитоплазма, при изучении на большом увеличении микроскопа, не является однородной средой. Различают две части – одна находится на периферии в области плазмолеммы (эктоплазма), другая – возле ядра (эндоплазма).

Эктоплазма служит связующим звеном с окружающей средой, межклеточной жидкостью и соседними клетками. Эндоплазма – это место расположения всех органелл.

В структуре цитоплазмы выделяют особые элементы – микротрубочки и микрофиламенты.

Микротрубочки – немембранные органоиды, необходимые для перемещения органелл внутри клетки и образования цитоскелета. Глобулярный белок тубулин – основное строительное вещество для микротрубочек. Одна молекула тубулина в диаметре не превышает 5нм. При этом молекулы способны объединятся друг с другом, вместе образуя цепочку. 13 таких цепочек формируют микротрубочку диаметром 25нм.

Молекулы тубулина находятся в постоянном движении для формирования микротрубочек, если на клетку воздействуют неблагоприятные факторы, процесс нарушается. Микротрубочки укорачиваются или вовсе денатурируются. Эти элементы цитоплазмы очень важны в жизни растительных и бактериальных клеток, так как принимают участие в строении их оболочек.


Микрофиламенты – это субмикроскопические немембранные органеллы, которые образуют цитоскелет. Также входят в состав сократительного аппарата клетки. Микрофиламенты состоят из двух видов белка – актина и миозина. Актиновые волокна тонкие до 5нм в диаметре, а миозиновые толстые – до 25нм. Микрофиламенты в основном сосредоточены в эктоплазме. Существуют также специфические филаменты, которые характерны для конкретного вида клеток.

Микротрубочки и микрофиламенты вместе образуют цитоскелет клетки, который обеспечивает взаимосвязь всех органелл и внутриклеточный метаболизм.

В цитоплазме также выделяют высокомолекулярные биополимеры. Они объединяются в мембранные комплексы, которые пронизывают все внутреннее пространство клетки, предопределяют месторасположение органелл, отграничивают цитоплазму от клеточной стенки.

Особенности строения цитоплазмы заключаются в способности изменять свою внутреннюю среду. Она может пребывать в двух состояниях: полужидком (золь ) и вязком (гель ). Так, в зависимости от влияния внешних факторов (температура, радиация, химические растворы), цитоплазма переходит из одного состояния в другое.

Функции

  • Наполняет внутриклеточное пространство;
  • связывает между собой все структурные элементы клетки;
  • транспортирует синтезированные вещества между органоидами и за пределы клетки;
  • устанавливает месторасположение органелл;
  • является средой для физико-химических реакций;
  • отвечает за клеточный тургор, постоянство внутренней среды клетки.

Функции цитоплазмы в клетке зависят также от вида самой клетки: растительная она, животная, эукариотическая или прокариотическая. Но во всех живых клетках в цитоплазме происходит важное физиологическое явление – гликолиз. Процесс окисления глюкозы, который осуществляется в аэробных условиях и заканчивается высвобождением энергии.

Движение цитоплазмы

Цитоплазма находится в постоянном движении, эта характеристика имеет огромное значение в жизни клетки. Благодаря движению возможны метаболические процессы внутри клетки и распределение синтезированных элементов между органеллами.

Биологи наблюдали движение цитоплазмы в больших клетках, при этом следя за перемещением вакуоль. За движение цитоплазмы отвечают микрофиламенты и микротрубочки, которые приводятся в действие при наличии молекул АТФ.

Движение цитоплазмы показывает, насколько активны клетки и способны к выживанию. Этот процесс зависим от внешних воздействий, поэтому малейшие изменения окружающих факторов приостанавливают или ускоряют его.

Роль цитоплазмы в биосинтезе белка . Биосинтез белка осуществляется при участии рибосом, они же непосредственно находятся в цитоплазме или на гранулярной ЭПС. Также через ядерные поры в цитоплазму поступает иРНК, которая несет информацию, скопированную с ДНК. В экзоплазме содержатся необходимые аминокислоты для синтеза белка и ферменты, катализирующие эти реакции.

Сводная таблица строения и функций цитоплазмы

Структурные элементы Строение Функции
Эктоплазма Плотный слой цитоплазмы Обеспечивает связь с внешней средой
Эндоплазма Более жидкий слой цитоплазмы Место расположения органоидов клетки
Микротрубочки Построены из глобулярного белка - тубулина с диаметром 5нм, который способен полимеризироваться Отвечают за внутриклеточный транспорт
Микрофиламенты Состоят из актиновых и миозиновых волокон Образуют цитоскелет, поддерживают связь между всеми органеллами

Известно, что большинство живых существ состоят из воды в свободном или связанном виде на 70 и более процентов. Откуда же ее берется столько, где она локализуется? Оказывается, каждая клетка в своем составе имеет до 80 % воды, и только остальное приходится на массу сухого вещества.

И главной "водной" структурой является как раз цитоплазма клетки. Это сложная, неоднородная, динамичная внутренняя среда, с особенностями строения и выполняемыми функциями которой мы и познакомимся далее.

Протопласт

Данным термином принято обозначать все внутреннее содержимое любой эукариотической мельчайшей структуры, отделенное плазматической мембраной от других ее "коллег". То есть сюда входит цитоплазма - внутренняя среда клетки, органоиды, в ней расположенные, ядро с ядрышками и генетическим материалом.

Какие органоиды располагаются внутри цитоплазмы? Это:

  • рибосомы;
  • митохондрии;
  • аппарат Гольджи;
  • лизосомы;
  • вакуоли (у растений и грибов);
  • клеточный центр;
  • пластиды (у растений);
  • реснички и жгутики;
  • микрофиламенты;
  • микротрубочки.

Ядро, отделенное кариолеммой, с ядрышками и также содержит цитоплазма клетки. В центре оно у животных, ближе к стенке - у растений.

Таким образом, особенности строения цитоплазмы будут во многом зависеть от типа клетки, от самого организма, его принадлежности к царству живых существ. В целом же она занимает все свободное пространство внутри и выполняет ряд важных функций.

Матрикс, или гиалоплазма

Строение цитоплазмы клетки складывается в первую очередь из ее деления на части:

  • гиалоплазма - постоянная жидкая часть;
  • органоиды;
  • включения - переменные структуры.

Матрикс, или гиалоплазма, - это главная внутренняя составляющая, которая может находиться в двух состояниях - золе и геле.

Цитозоль - такая цитоплазма клетки, которая обладает более жидким агрегатным характером. Цитогель - то же самое, но в более густом, богатом крупными молекулами органических веществ, состоянии. Общий химический состав и физические свойства гиалоплазмы выражаются так:

  • бесцветное, вязкое коллоидное вещество, достаточно густое и слизистое;
  • имеет четкую дифференциацию по структурной организации, однако вследствие подвижности легко может ее изменять;
  • изнутри представлена цитоскелетом или микротрабекулярной решеткой, которая образуется за счет белковых нитей (микротрубочек и микрофиламентов);
  • на частях данной решетки и располагаются все структурные части клетки в целом, а за счет микротрубочек, аппарата Гольджи и ЭПС между ними через гиалоплазму происходит сообщение.

Таким образом, гиалоплазма - важная часть, которая обеспечивает многие функции цитоплазмы в клетке.

Состав цитоплазмы

Если говорить о химической составе, то на долю воды в цитоплазме приходится около 70 %. Это усредненное значение, ведь у некоторых растений есть клетки, в которых до 90-95% воды. Сухое вещество представлено:


Общая химическая реакция среды - щелочная либо слабощелочная. Если рассмотреть, как располагается цитоплазма клетки, то следует отметить такую особенность. Часть собрана у края, в районе плазмалеммы, и называется эктоплазмой. Другая же часть ориентирована ближе к кариолемме, носит имя эндоплазмы.

Строение цитоплазмы клетки определяется специальными структурами - микротрубочками и микрофиламентами, поэтому их рассмотрим подробнее.

Микротрубочки

Полые небольшие удлиненные частички размером до нескольких микрометров. Диаметр - от 6 до 25 нм. Из-за слишком мизерных показателей полное и емкое изучение данных структур пока невозможно, однако предполагают, что стенки их состоят из белкового вещества тубулина. Это соединение имеет цепочечную спирально закрученную молекулу.

Некоторые функции цитоплазмы в клетке исполняются именно благодаря наличию микротрубочек. Так, например, они участвуют в выстраивании грибов и растений, некоторых бактерий. В клетках животных их намного меньше. Также именно эти структуры осуществляют движение органоидов в цитоплазме.

Сами по себе микротрубочки нестабильны, способны быстро распадаться и формироваться вновь, время от времени обновляясь.

Микрофиламенты

Достаточно важные элементы цитоплазмы. Представляют собой длинные нити из актина (глобулярный белок), которые, переплетаясь друг с другом, формируют общую сеть - цитоскелет. Другое название - микротрабекулярная решетка. Это своего рода особенности строения цитоплазмы. Ведь именно благодаря такому цитоскелету удерживаются вместе все органоиды, они могут смело сообщаться между собой, через них проходят вещества и молекулы, осуществляется метаболизм.

Однако известно, что цитоплазма - внутренняя среда клетки, которая часто способна менять свои физические данные: становиться более жидкой или вязкой, менять структуру (переход из золя в гель и обратно). В связи с этим микрофиламенты - динамичная, лабильная часть, способная быстро перестраиваться, видоизменяться, распадаться и формироваться вновь.

Плазматические мембраны

Важное значение для клетки имеет наличие хорошо развитых и нормально функционирующих многочисленных мембранных структур, что также составляет своего рода особенности строения цитоплазмы. Ведь именно через плазматические мембранные преграды происходит транспорт молекул, питательных веществ и продуктов метаболизма, газов для процессов дыхания и так далее. Именно поэтому большинство органоидов имеет эти структуры.

Они, подобно сети, располагаются в цитоплазме и отграничивают внутреннее содержимое своих хозяев друг от друга, от окружающей среды. Защищают и предохраняют от нежелательных веществ и бактерий, представляющих угрозу.

Строение большинства из них сходно - жидкостно-мозаичная модель, рассматривающая каждую плазмалемму как биослой из липидов, пронизанный разными белковыми молекулами.

Так как функции цитоплазмы в клетке - это в первую очередь транспортное сообщение между всеми ее частями, то наличие мембран у большинства органоидов является одной из структурных частей гиалоплазмы. Комплексно, все вместе, они выполняют общие задачи по обеспечению жизнедеятельности клетки.

Рибосомы

Небольшие (до 20 нм) округлые структуры, состоящие из двух половинок - субъединиц. Эти половинки могут существовать как вместе, так и разъединяться на какое-то время. Основа состава: и белок. Основные места локализации рибосом в клетке:


Функции данных структур заключаются в синтезе и сборке белковых макромолекул, которые расходуются на жизнедеятельность клетки.

и аппарат Гольджи

Многочисленная сеть канальцев, трубочек и пузырьков, образующая проводящую систему внутри клетки и расположенная по всему объему цитоплазмы, носит название эндоплазматической сети, или ретикулума. Ее функция соответствует строению - обеспечение взаимосвязи органоидов между собой и транспортировка питательных молекул к органеллам.

Комплекс Гольджи, или аппарат, выполняет функцию накопления необходимых веществ (углеводов, жиров, белков) в системе специальных полостей. Они ограничены от цитоплазмы мембранами. Также именно данный органоид является местом синтеза жиров и углеводов.

Пероксисомы и лизосомы

Лизосомы - небольшие округлые структуры, напоминающие пузырьки, заполненные жидкостью. Они весьма многочисленны и распределены в цитоплазме, где свободно перемещаются внутри клетки. Главная задача их - растворение чужеродных частиц, то есть устранение "врагов" в виде отмерших участков клеточных структур, бактерий и других молекул.

Жидкое содержимое насыщенно ферментами, поэтому лизосомы принимают участие в расщеплении макромолекул до их мономерных звеньев.

Пероксисомы - небольшие овальные или круглые органеллы, имеющие одинарную мембрану. Заполнены жидким содержимым, включающим большое количество различных ферментов. Являются одними из основных потребителей кислорода. Свои функции выполняют в зависимости от типа клетки, в которой находятся. Возможен синтез миелина для оболочки нервных волокон, а также могут осуществлять окисление и обезвреживание токсичных веществ и разных молекул.

Митохондрии

Данные структуры совершенно не зря называют силовыми (энергетическими) станциями клетки. Ведь именно в них происходит образование главных энергоносителей - молекул аденозинтрифосфорной кислоты, или АТФ. По внешнему виду напоминают фасолину. Мембрана, ограничивающая митохондрию от цитоплазмы, двойная. Внутренняя структура сильно складчатая для увеличения поверхности синтеза АТФ. Складки имеют название кристы, содержат большое количество разных ферментов для катализирования процессов синтеза.

Больше всего митохондрий имеют мышечные клетки в организмах животных и человека, так как именно они требуют повышенного содержания и расхода энергии.

Явление циклоза

Движение цитоплазмы в клетке имеет название циклоза. Оно складывается из нескольких типов:

  • колебательное;
  • ротационное, или круговое;
  • струйчатое.

Любое движение необходимо для обеспечения ряда важных функций цитоплазмы: полноценного перемещения органоидов внутри гиалоплазмы, равномерного обмена питательными веществами, газами, энергией, выведения метаболитов.

Циклоз происходит как в растительных, так и в животных клетках, без исключений. Если он прекращается, то организм погибает. Поэтому данный процесс - это еще и показатель жизнедеятельности существ.

Таким образом, можно сделать вывод о том, что цитоплазма животной любой эукариотической - очень динамичная, живая структура.

Отличие цитоплазмы животной и растительной клетки

На самом деле отличий немного. Общий план строения, выполняемые функции полностью схожи. Однако некоторые расхождения все же есть. Так, например:


В остальных отношениях обе структуры идентичны по составу и строению цитоплазмы. Может варьироваться количество тех или иных элементных звеньев, но наличие их обязательно. Поэтому значение цитоплазмы в клетке как растений, так и животных одинаково велико.

Роль цитоплазмы в клетке

Значение цитоплазмы в клетке велико, если не сказать, что оно определяющее. Ведь это основа, в которой располагаются все жизненно важные структуры, поэтому переоценить ее роль сложно. Можно сформулировать несколько основных пунктов, раскрывающих это значение.

  1. Именно она объединяет все составные части клетки в одну комплексную единую систему, осуществляющую процессы жизнедеятельности слаженно и совокупно.
  2. Благодаря входящей в состав воде, цитоплазма в клетке выполняет функции среды для многочисленных сложных биохимических взаимодействий и физиологических превращений веществ (гликолиз, питание, газообмен).
  3. Это основная "емкость" для существования всех органоидов клетки.
  4. За счет микрофиламентов и трубочек формирует цитоскелет, связывая органоиды и позволяя им передвигаться.
  5. Именно в цитоплазме сосредоточен ряд - ферментов, без которых не происходит ни одна биохимическая реакция.

Подводя итог, нужно сказать следующее. Роль цитоплазмы в клетке практически ключевая, так как она - основа всех процессов, среда жизни и субстрат для реакций.

Наряду с именно цитоплазма является одной из главных частей клетки, этого строительного материала всякой органической материи. Цитоплазма играет в жизни клетки очень важную роль, она объединяет собой все клеточные структуры, способствует их взаимодействию друг с другом. Также в цитоплазме располагается ядро клетки и все . Если говорить простыми словами, то цитоплазма представляет собой такое вещество, в котором находятся все другие составные части клетки.

Строение цитоплазмы

В состав цитоплазмы входят различные химические соединения, которые представляют собой не однородное химическое вещество, а сложную физико-химическую систему, она к тому же постоянно меняется и развивается и имеет в себе большое содержание воды. Важным компонентом цитоплазмы является белковая смесь в коллоидном состоянии в сочетании с нуклеиновыми кислотами, жирами и углеводами.

Также цитоплазма разделяется на две составные части:

  • эндоплазму,
  • экзоплазму.

Эндоплазма располагается в центре клетки и имеет более текучую структуру. Именно в ней находятся все самые важные органоиды клетки. Экзоплазма располагается по периметру клетки, где граничит с ее мембраной, она более вязкая и плотная по консистенции. Она играет связующую роль клетки с окружающей средой.

Рисунок цитоплазмы.

Функции цитоплазмы

Какую функцию выполняет цитоплазма? Очень важную – в цитоплазме проходят все процессы клеточного метаболизма, за исключением синтеза нуклеиновых кислот (он осуществляется в ядре клетки). Помимо этой, самой важной функции, цитоплазма играет такие полезные роли:

  • заполняет клеточную полость,
  • является связующим звеном для клеточных компонентов,
  • определяет положение органоидов,
  • является проводником для физических и химических процессов на внутриклеточном и межклеточном уровнях,
  • поддерживает внутреннее давление клетки, ее объем, упругость и т. д.

Движение цитоплазмы

Способность цитоплазмы к движению является важным ее свойством, благодаря этому обеспечивается связь органоидов клетки. В биологии движение цитоплазмы называется циклозом, оно является постоянным процессом. Движение цитоплазмы в клетке может иметь струйчатый, колебательный или круговой характер.

Деление цитоплазмы

Еще одним свойством цитоплазмы является ее деление, без которого было бы попросту невозможно само деление клетки. Деление цитоплазмы осуществляется посредством

Цели урока:

  • Углубить общие представления о строении эукариотической клетки.
  • Сформулировать знания о свойствах и функциях цитоплазмы.
  • На практической работе убедиться, что цитоплазма живой клетки эластична и полупроницаема.

Ход урока

  • Записываем тему урока.
  • Повторяем пройденный материал, работаем с тестами.
  • Читаем и комментируем вопросы тестов. (См. Приложение 1 ).
  • Записываем домашнее задание: п.5.2., записи в тетрадях.
  • Изучение нового материала.

Это основное вещество цитоплазмы.

Это сложная коллоидная система.

Состоит из воды, белков, углеводов, нуклеиновых кислот, липидов, неорганических веществ.

Имеется цитоскелет.

Цитоплазма всё время перемещается.

Функции цитоплазмы.

  • Внутренняя среда клетки.
  • Объединяет все клеточные структуры.
  • Определяет местоположение органоидов.
  • Обеспечивает внутриклеточный транспорт.

Свойства цитоплазмы:

  • Эластичность.
  • Полупроницаемость.

Благодаря этим свойствам клетка переносит временное обезвоживание и поддерживает постоянство своего состава.

Необходимо вспомнить такие понятия как тургор, осмос, диффузия .

Для того чтобы ознакомиться со свойствами цитоплазмы, учащимся предлагается выполнить практическую работу: "Изучение плазмолиза и деплазмолиза в растительной клетке. (См. Приложение 2).

В процессе работы необходимо нарисовать клетку кожицы лука (Пункт 1. Клетку в пункте 2 и 3).

Сделать вывод о происходящих в клетке процессах (устно)

Ребята пытаются объяснить, что в пункте 2 наблюдается плазмолиз- отделение пристеночного слоя цитоплазмы, в пункте 3 наблюдается деплазмолиз - возврат цитоплазмы к нормальному состоянию.

Необходимо объяснить причины этих явлений. Чтобы снять затруднения перед уроками даю трём ученикам учебные пособия: "Биологический энциклопедический словарь", 2 том биологии Н.Грин, " Эксперимент по физиологии растений" Е.М.Васильева, где они самостоятельно находят материал о причинах плазмолиза и деплазмолиза.

Выясняется, что цитоплазма эластична и полупроницаема. Если бы она была проницаемой, то происходило бы выравнивание концентраций клеточного сока и гипертонического раствора путём диффузного перемещения воды и растворённых веществ из клетки в раствор и обратно. Однако цитоплазма, обладая свойством полупроницаемости, не пропускает внутрь клетки растворённые в воде вещества.

Напротив, только вода, согласно законам осмоса, будет высасываться гипертоническим раствором из клетки, т.е. передвигаться через полупроницаемую цитоплазму. Объём вакуоли уменьшится. Цитоплазма в силу эластичности следует за сокращающейся вакуолью и отстаёт от оболочки клетки. Так происходит плазмолиз.

При погружении плазмолизированной клетки в воду наблюдается деплазмолиз.

Обобщение знаний, полученных на уроке.

  1. Какие функции присущи цитоплазме?
  2. Свойства цитоплазмы.
  3. Значение плазмолиза и деплазмолиза.
  4. Цитоплазма - это
    а) водный раствор солей и органических веществ вместе с органоидами клетки, но без ядра;
    б) раствор органических веществ, включающий ядро клетки;
    в) водный раствор минеральных веществ, включающий все органоиды клетки с ядром.
  5. Как называется основное вещество цитоплазмы?

Во время практической работы учитель проверяет правильность её выполнения. У кого всё получилось, можно поставить оценки. Оценки выставляются за правильные выводы.